On the nonexistence of elements of Kervaire invariant one
Annals of mathematics, Tome 184 (2016) no. 1, pp. 1-262.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that the Kervaire invariant one elements $\theta_{j}\in\pi_{2^{j+1}-2}S^{0}$ exist only for $j\le 6$. By Browder’s Theorem, this means that smooth framed manifolds of Kervaire invariant one exist only in dimensions $2$, $6$, $14$, $30$, $62$, and possibly $126$. Except for dimension $126$ this resolves a longstanding problem in algebraic topology.
DOI : 10.4007/annals.2016.184.1.1

M. A. Hill 1 ; M. J. Hopkins 2 ; D. C. Ravenel 3

1 University of Virginia, Charlottesville, VA
2 Harvard University, Cambridge, MA
3 University of Rochester, Rochester, NY
@article{10_4007_annals_2016_184_1_1,
     author = {M. A. Hill and M. J. Hopkins and D. C. Ravenel},
     title = {On the nonexistence of elements of {Kervaire} invariant one},
     journal = {Annals of mathematics},
     pages = {1--262},
     publisher = {mathdoc},
     volume = {184},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.184.1.1},
     mrnumber = {3505179},
     zbl = {06605831},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.1/}
}
TY  - JOUR
AU  - M. A. Hill
AU  - M. J. Hopkins
AU  - D. C. Ravenel
TI  - On the nonexistence of elements of Kervaire invariant one
JO  - Annals of mathematics
PY  - 2016
SP  - 1
EP  - 262
VL  - 184
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.1/
DO  - 10.4007/annals.2016.184.1.1
LA  - en
ID  - 10_4007_annals_2016_184_1_1
ER  - 
%0 Journal Article
%A M. A. Hill
%A M. J. Hopkins
%A D. C. Ravenel
%T On the nonexistence of elements of Kervaire invariant one
%J Annals of mathematics
%D 2016
%P 1-262
%V 184
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.1/
%R 10.4007/annals.2016.184.1.1
%G en
%F 10_4007_annals_2016_184_1_1
M. A. Hill; M. J. Hopkins; D. C. Ravenel. On the nonexistence of elements of Kervaire invariant one. Annals of mathematics, Tome 184 (2016) no. 1, pp. 1-262. doi : 10.4007/annals.2016.184.1.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.1.1/

Cité par Sources :