Large gaps between consecutive prime numbers
Annals of mathematics, Tome 183 (2016) no. 3, pp. 935-974.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $G(X)$ denote the size of the largest gap between consecutive primes below $X$. Answering a question of Erdős, we show that \[ G(X) \geq f(X) \frac{\log X \log \log X \log \log \log \log X}{(\log \log \log X)^2},\] where $f(X)$ is a function tending to infinity with $X$. Our proof combines existing arguments with a random construction covering a set of primes by arithmetic progressions. As such, we rely on recent work on the existence and distribution of long arithmetic progressions consisting entirely of primes.
DOI : 10.4007/annals.2016.183.3.4

Kevin Ford 1 ; Ben Green 2 ; Sergei Konyagin 3 ; Terence Tao 4

1 University of Illinois at Urbana-Champaign Urbana, IL
2 Mathematical Institute Oxford England
3 Steklov Mathematical Institute Moscow, Russia
4 University of California Los Angeles CA
@article{10_4007_annals_2016_183_3_4,
     author = {Kevin Ford and Ben Green and Sergei Konyagin and Terence Tao},
     title = {Large gaps between consecutive prime numbers},
     journal = {Annals of mathematics},
     pages = {935--974},
     publisher = {mathdoc},
     volume = {183},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.183.3.4},
     mrnumber = {3488740},
     zbl = {1338.11083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.4/}
}
TY  - JOUR
AU  - Kevin Ford
AU  - Ben Green
AU  - Sergei Konyagin
AU  - Terence Tao
TI  - Large gaps between consecutive prime numbers
JO  - Annals of mathematics
PY  - 2016
SP  - 935
EP  - 974
VL  - 183
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.4/
DO  - 10.4007/annals.2016.183.3.4
LA  - en
ID  - 10_4007_annals_2016_183_3_4
ER  - 
%0 Journal Article
%A Kevin Ford
%A Ben Green
%A Sergei Konyagin
%A Terence Tao
%T Large gaps between consecutive prime numbers
%J Annals of mathematics
%D 2016
%P 935-974
%V 183
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.4/
%R 10.4007/annals.2016.183.3.4
%G en
%F 10_4007_annals_2016_183_3_4
Kevin Ford; Ben Green; Sergei Konyagin; Terence Tao. Large gaps between consecutive prime numbers. Annals of mathematics, Tome 183 (2016) no. 3, pp. 935-974. doi : 10.4007/annals.2016.183.3.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.4/

Cité par Sources :