Large gaps between primes
Annals of mathematics, Tome 183 (2016) no. 3, pp. 915-933.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that there exist pairs of consecutive primes less than $x$ whose difference is larger than \[ t(1+o(1))(\log{x})(\log\log{x})(\log\log\log\log{x})(\log\log\log{x})^{-2}\] for any fixed $t$. This answers a well-known question of Erdős.
DOI : 10.4007/annals.2016.183.3.3

James Maynard 1

1 Magdalen College, Oxford, England
@article{10_4007_annals_2016_183_3_3,
     author = {James Maynard},
     title = {Large gaps between primes},
     journal = {Annals of mathematics},
     pages = {915--933},
     publisher = {mathdoc},
     volume = {183},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.183.3.3},
     mrnumber = {3488739},
     zbl = {06589410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.3/}
}
TY  - JOUR
AU  - James Maynard
TI  - Large gaps between primes
JO  - Annals of mathematics
PY  - 2016
SP  - 915
EP  - 933
VL  - 183
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.3/
DO  - 10.4007/annals.2016.183.3.3
LA  - en
ID  - 10_4007_annals_2016_183_3_3
ER  - 
%0 Journal Article
%A James Maynard
%T Large gaps between primes
%J Annals of mathematics
%D 2016
%P 915-933
%V 183
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.3/
%R 10.4007/annals.2016.183.3.3
%G en
%F 10_4007_annals_2016_183_3_3
James Maynard. Large gaps between primes. Annals of mathematics, Tome 183 (2016) no. 3, pp. 915-933. doi : 10.4007/annals.2016.183.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.3/

Cité par Sources :