Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields
Annals of mathematics, Tome 183 (2016) no. 3, pp. 729-786.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove a homological stabilization theorem for Hurwitz spaces: moduli spaces of branched covers of the complex projective line. This has the following arithmetic consequence: let $\ell > 2$ be prime and $A$ a finite abelian $\ell$-group. Then there exists $Q = Q(A)$ such that, for $q$ greater than $Q$, a positive fraction of quadratic extensions of $\mathbb{F}_q(t)$ have the $\ell$-part of their class group isomorphic to $A$.
DOI : 10.4007/annals.2016.183.3.1

Jordan S. Ellenberg 1 ; Akshay Venkatesh 2 ; Craig Westerland 3

1 University of Wisconsin, Madison, WI
2 Stanford University, Stanford, CA
3 University of Minnesota, Minneapolis, MN
@article{10_4007_annals_2016_183_3_1,
     author = {Jordan S. Ellenberg and Akshay Venkatesh and Craig Westerland},
     title = {Homological stability for {Hurwitz} spaces and the {Cohen-Lenstra} conjecture over function fields},
     journal = {Annals of mathematics},
     pages = {729--786},
     publisher = {mathdoc},
     volume = {183},
     number = {3},
     year = {2016},
     doi = {10.4007/annals.2016.183.3.1},
     mrnumber = {3488737},
     zbl = {06589408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.1/}
}
TY  - JOUR
AU  - Jordan S. Ellenberg
AU  - Akshay Venkatesh
AU  - Craig Westerland
TI  - Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields
JO  - Annals of mathematics
PY  - 2016
SP  - 729
EP  - 786
VL  - 183
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.1/
DO  - 10.4007/annals.2016.183.3.1
LA  - en
ID  - 10_4007_annals_2016_183_3_1
ER  - 
%0 Journal Article
%A Jordan S. Ellenberg
%A Akshay Venkatesh
%A Craig Westerland
%T Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields
%J Annals of mathematics
%D 2016
%P 729-786
%V 183
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.1/
%R 10.4007/annals.2016.183.3.1
%G en
%F 10_4007_annals_2016_183_3_1
Jordan S. Ellenberg; Akshay Venkatesh; Craig Westerland. Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields. Annals of mathematics, Tome 183 (2016) no. 3, pp. 729-786. doi : 10.4007/annals.2016.183.3.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.3.1/

Cité par Sources :