Embedded self-similar shrinkers of genus $0$
Annals of mathematics, Tome 183 (2016) no. 2, pp. 715-728.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We confirm a well-known conjecture that the round sphere is the only compact, embedded self-similar shrinking solution of mean curvature flow in $\mathbb{R}^3$ with genus $0$. More generally, we show that the only properly embedded self-similar shrinkers in $\mathbb{R}^3$ with vanishing intersection form are the sphere, the cylinder, and the plane. This answers two questions posed by T. Ilmanen.
DOI : 10.4007/annals.2016.183.2.6

Simon Brendle 1

1 Stanford University, Stanford, CA
@article{10_4007_annals_2016_183_2_6,
     author = {Simon Brendle},
     title = {Embedded self-similar shrinkers of genus $0$},
     journal = {Annals of mathematics},
     pages = {715--728},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2016},
     doi = {10.4007/annals.2016.183.2.6},
     mrnumber = {3450486},
     zbl = {06575347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.6/}
}
TY  - JOUR
AU  - Simon Brendle
TI  - Embedded self-similar shrinkers of genus $0$
JO  - Annals of mathematics
PY  - 2016
SP  - 715
EP  - 728
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.6/
DO  - 10.4007/annals.2016.183.2.6
LA  - en
ID  - 10_4007_annals_2016_183_2_6
ER  - 
%0 Journal Article
%A Simon Brendle
%T Embedded self-similar shrinkers of genus $0$
%J Annals of mathematics
%D 2016
%P 715-728
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.6/
%R 10.4007/annals.2016.183.2.6
%G en
%F 10_4007_annals_2016_183_2_6
Simon Brendle. Embedded self-similar shrinkers of genus $0$. Annals of mathematics, Tome 183 (2016) no. 2, pp. 715-728. doi : 10.4007/annals.2016.183.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.6/

Cité par Sources :