Regularity of area minimizing currents III: blow-up
Annals of mathematics, Tome 183 (2016) no. 2, pp. 577-617.

Voir la notice de l'article provenant de la source Annals of Mathematics website

This is the last of a series of three papers in which we give a new, shorter proof of a slightly improved version of Almgren’s partial regularity of area minimizing currents in Riemannian manifolds. Here we perform a blow-up analysis deducing the regularity of area minimizing currents from that of Dir-minimizing multiple valued functions.
DOI : 10.4007/annals.2016.183.2.3

Camillo De Lellis 1 ; Emanuele Spadaro 2

1 Mathematik Institut der Universität Zürich, Switzerland
2 Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany
@article{10_4007_annals_2016_183_2_3,
     author = {Camillo De Lellis and Emanuele Spadaro},
     title = {Regularity of area minimizing currents {III:} blow-up},
     journal = {Annals of mathematics},
     pages = {577--617},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2016},
     doi = {10.4007/annals.2016.183.2.3},
     mrnumber = {3450483},
     zbl = {06575344},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.3/}
}
TY  - JOUR
AU  - Camillo De Lellis
AU  - Emanuele Spadaro
TI  - Regularity of area minimizing currents III: blow-up
JO  - Annals of mathematics
PY  - 2016
SP  - 577
EP  - 617
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.3/
DO  - 10.4007/annals.2016.183.2.3
LA  - en
ID  - 10_4007_annals_2016_183_2_3
ER  - 
%0 Journal Article
%A Camillo De Lellis
%A Emanuele Spadaro
%T Regularity of area minimizing currents III: blow-up
%J Annals of mathematics
%D 2016
%P 577-617
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.3/
%R 10.4007/annals.2016.183.2.3
%G en
%F 10_4007_annals_2016_183_2_3
Camillo De Lellis; Emanuele Spadaro. Regularity of area minimizing currents III: blow-up. Annals of mathematics, Tome 183 (2016) no. 2, pp. 577-617. doi : 10.4007/annals.2016.183.2.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.2.3/

Cité par Sources :