Indecomposable vector bundles and stable Higgs bundles over smooth projective curves
Annals of mathematics, Tome 183 (2016) no. 1, pp. 297-362.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the number of geometrically indecomposable vector bundles of fixed rank $r$ and degree $d$ over a smooth projective curve $X$ defined over a finite field is given by a polynomial (depending only on $r,d$ and the genus $g$ of $X$) in the Weil numbers of $X$. We provide a closed formula — expressed in terms of generating series- for this polynomial. We also show that the same polynomial computes the number of points of the moduli space of stable Higgs bundles of rank $r$ and degree $d$ over $X$. This entails a closed formula for the Poincaré polynomial of the moduli spaces of stable Higgs bundles over a compact Riemann surface, and hence also for the Poincaré polynomials of the twisted character varieties for the groups ${\rm GL}(r)$.
DOI : 10.4007/annals.2016.183.1.6

Olivier Schiffmann 1

1 Université de Paris-Sud Orsay, Orsay, France
@article{10_4007_annals_2016_183_1_6,
     author = {Olivier Schiffmann},
     title = {Indecomposable vector bundles and stable {Higgs} bundles over  smooth projective curves},
     journal = {Annals of mathematics},
     pages = {297--362},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.183.1.6},
     mrnumber = {3432585},
     zbl = {06541587},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.6/}
}
TY  - JOUR
AU  - Olivier Schiffmann
TI  - Indecomposable vector bundles and stable Higgs bundles over  smooth projective curves
JO  - Annals of mathematics
PY  - 2016
SP  - 297
EP  - 362
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.6/
DO  - 10.4007/annals.2016.183.1.6
LA  - en
ID  - 10_4007_annals_2016_183_1_6
ER  - 
%0 Journal Article
%A Olivier Schiffmann
%T Indecomposable vector bundles and stable Higgs bundles over  smooth projective curves
%J Annals of mathematics
%D 2016
%P 297-362
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.6/
%R 10.4007/annals.2016.183.1.6
%G en
%F 10_4007_annals_2016_183_1_6
Olivier Schiffmann. Indecomposable vector bundles and stable Higgs bundles over  smooth projective curves. Annals of mathematics, Tome 183 (2016) no. 1, pp. 297-362. doi : 10.4007/annals.2016.183.1.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.6/

Cité par Sources :