Functoriality, Smith theory, and the Brauer homomorphism
Annals of mathematics, Tome 183 (2016) no. 1, pp. 177-228.

Voir la notice de l'article provenant de la source Annals of Mathematics website

If $\sigma$ is an automorphism of order $p$ of the semisimple group $\mathbf{G}$, there is a natural correspondence between $\mathrm{mod}p$ cohomological automorphic forms on $\mathbf{G}$ and $\mathbf{G}^{\sigma}$. We describe this correspondence in the global and local settings.
DOI : 10.4007/annals.2016.183.1.4

David Treumann 1 ; Akshay Venkatesh 2

1 Boston College, Chestnut Hill, MA
2 Stanford University, Stanford, CA
@article{10_4007_annals_2016_183_1_4,
     author = {David Treumann and Akshay Venkatesh},
     title = {Functoriality, {Smith} theory, and the {Brauer} homomorphism},
     journal = {Annals of mathematics},
     pages = {177--228},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.183.1.4},
     mrnumber = {3432583},
     zbl = {06541585},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.4/}
}
TY  - JOUR
AU  - David Treumann
AU  - Akshay Venkatesh
TI  - Functoriality, Smith theory, and the Brauer homomorphism
JO  - Annals of mathematics
PY  - 2016
SP  - 177
EP  - 228
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.4/
DO  - 10.4007/annals.2016.183.1.4
LA  - en
ID  - 10_4007_annals_2016_183_1_4
ER  - 
%0 Journal Article
%A David Treumann
%A Akshay Venkatesh
%T Functoriality, Smith theory, and the Brauer homomorphism
%J Annals of mathematics
%D 2016
%P 177-228
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.4/
%R 10.4007/annals.2016.183.1.4
%G en
%F 10_4007_annals_2016_183_1_4
David Treumann; Akshay Venkatesh. Functoriality, Smith theory, and the Brauer homomorphism. Annals of mathematics, Tome 183 (2016) no. 1, pp. 177-228. doi : 10.4007/annals.2016.183.1.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.4/

Cité par Sources :