Kähler–Einstein metrics with edge singularities
Annals of mathematics, Tome 183 (2016) no. 1, pp. 95-176.

Voir la notice de l'article provenant de la source Annals of Mathematics website

This article considers the existence and regularity of Kähler–Einstein metrics on a compact Kähler manifold $M$ with edge singularities with cone angle $2\pi \beta$ along a smooth divisor $D$. We prove existence of such metrics with negative, zero and some positive cases for all cone angles $2\pi \beta \leq 2\pi$. The results in the positive case parallel those in the smooth case. We also establish that solutions of this problem are polyhomogeneous, i.e., have a complete asymptotic expansion with smooth coefficients along $D$ for all $2\pi \beta < 2\pi$.
DOI : 10.4007/annals.2016.183.1.3

Thalia Jeffres 1 ; Rafe Mazzeo 2 ; Yanir A. Rubinstein 3

1 Wichita State University, Wichita, KS
2 Stanford University, Stanford, CA
3 University of Maryland, College Park, MD
@article{10_4007_annals_2016_183_1_3,
     author = {Thalia Jeffres and Rafe Mazzeo and Yanir A. Rubinstein},
     title = {K\"ahler{\textendash}Einstein metrics with edge singularities},
     journal = {Annals of mathematics},
     pages = {95--176},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.183.1.3},
     mrnumber = {3432582},
     zbl = {06541584},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.3/}
}
TY  - JOUR
AU  - Thalia Jeffres
AU  - Rafe Mazzeo
AU  - Yanir A. Rubinstein
TI  - Kähler–Einstein metrics with edge singularities
JO  - Annals of mathematics
PY  - 2016
SP  - 95
EP  - 176
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.3/
DO  - 10.4007/annals.2016.183.1.3
LA  - en
ID  - 10_4007_annals_2016_183_1_3
ER  - 
%0 Journal Article
%A Thalia Jeffres
%A Rafe Mazzeo
%A Yanir A. Rubinstein
%T Kähler–Einstein metrics with edge singularities
%J Annals of mathematics
%D 2016
%P 95-176
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.3/
%R 10.4007/annals.2016.183.1.3
%G en
%F 10_4007_annals_2016_183_1_3
Thalia Jeffres; Rafe Mazzeo; Yanir A. Rubinstein. Kähler–Einstein metrics with edge singularities. Annals of mathematics, Tome 183 (2016) no. 1, pp. 95-176. doi : 10.4007/annals.2016.183.1.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.3/

Cité par Sources :