Defining ${\mathbb Z}$ in ${\mathbb Q}$
Annals of mathematics, Tome 183 (2016) no. 1, pp. 73-93.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that ${\mathbb Z}$ is definable in ${\mathbb Q}$ by a universal first-order formula in the language of rings. We also present an $\forall\exists$-formula for ${\mathbb Z}$ in ${\mathbb Q}$ with just one universal quantifier. We exhibit new diophantine subsets of ${\mathbb Q}$ like the complement of the image of the norm map under a quadratic extension, and we give an elementary proof for the fact that the set of nonsquares is diophantine.
DOI : 10.4007/annals.2016.183.1.2

Jochen Koenigsmann 1

1 Mathematical Institute, University of Oxford, Oxford, UK
@article{10_4007_annals_2016_183_1_2,
     author = {Jochen Koenigsmann},
     title = {Defining ${\mathbb Z}$ in ${\mathbb Q}$},
     journal = {Annals of mathematics},
     pages = {73--93},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.183.1.2},
     mrnumber = {3432581},
     zbl = {06541583},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.2/}
}
TY  - JOUR
AU  - Jochen Koenigsmann
TI  - Defining ${\mathbb Z}$ in ${\mathbb Q}$
JO  - Annals of mathematics
PY  - 2016
SP  - 73
EP  - 93
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.2/
DO  - 10.4007/annals.2016.183.1.2
LA  - en
ID  - 10_4007_annals_2016_183_1_2
ER  - 
%0 Journal Article
%A Jochen Koenigsmann
%T Defining ${\mathbb Z}$ in ${\mathbb Q}$
%J Annals of mathematics
%D 2016
%P 73-93
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.2/
%R 10.4007/annals.2016.183.1.2
%G en
%F 10_4007_annals_2016_183_1_2
Jochen Koenigsmann. Defining ${\mathbb Z}$ in ${\mathbb Q}$. Annals of mathematics, Tome 183 (2016) no. 1, pp. 73-93. doi : 10.4007/annals.2016.183.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.2/

Cité par Sources :