Hasse principles for higher-dimensional fields
Annals of mathematics, Tome 183 (2016) no. 1, pp. 1-71.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For rather general excellent schemes $X$, K. Kato defined complexes of Gersten-Bloch-Ogus type involving the Galois cohomology groups of all residue fields of $X$. For arithmetically interesting schemes, he developed a fascinating web of conjectures on some of these complexes, which generalize the classical Hasse principle for Brauer groups over global fields, and proved these conjectures for low dimensions. We prove Kato’s conjecture over number fields in any dimension. This gives a cohomological Hasse principle for function fields $F$ over a number field $K$, involving the corresponding function fields $F_v$ over the completions $K_v$ of $K$. For global function fields $K$ we prove the part on injectivity for coefficients invertible in $K$. Assuming resolution of singularities, we prove a similar conjecture of Kato over finite fields, and a generalization to arbitrary finitely generated fields.
DOI : 10.4007/annals.2016.183.1.1

Uwe Jannsen 1

1 Universität Regensburg, Regensburg Germany
@article{10_4007_annals_2016_183_1_1,
     author = {Uwe Jannsen},
     title = {Hasse principles for higher-dimensional fields},
     journal = {Annals of mathematics},
     pages = {1--71},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2016},
     doi = {10.4007/annals.2016.183.1.1},
     mrnumber = {3432580},
     zbl = {06541582},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.1/}
}
TY  - JOUR
AU  - Uwe Jannsen
TI  - Hasse principles for higher-dimensional fields
JO  - Annals of mathematics
PY  - 2016
SP  - 1
EP  - 71
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.1/
DO  - 10.4007/annals.2016.183.1.1
LA  - en
ID  - 10_4007_annals_2016_183_1_1
ER  - 
%0 Journal Article
%A Uwe Jannsen
%T Hasse principles for higher-dimensional fields
%J Annals of mathematics
%D 2016
%P 1-71
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.1/
%R 10.4007/annals.2016.183.1.1
%G en
%F 10_4007_annals_2016_183_1_1
Uwe Jannsen. Hasse principles for higher-dimensional fields. Annals of mathematics, Tome 183 (2016) no. 1, pp. 1-71. doi : 10.4007/annals.2016.183.1.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.183.1.1/

Cité par Sources :