Regularity of Einstein manifolds and the codimension $4$ conjecture
Annals of mathematics, Tome 182 (2015) no. 3, pp. 1093-1165.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper, we are concerned with the regularity of noncollapsed Riemannian manifolds $(M^n,g)$ with bounded Ricci curvature, as well as their Gromov-Hausdorff limit spaces $(M^n_j,d_j)\stackrel{d_{\rm GH}}{\longrightarrow} (X,d)$, where $d_j$ denotes the Riemannian distance. Our main result is a solution to the codimension $4$ conjecture, namely that $X$ is smooth away from a closed subset of codimension $4$. We combine this result with the ideas of quantitative stratification to prove a priori $L^q$ estimates on the full curvature $|\mathrm{Rm}|$ for all $q<2$. In the case of Einstein manifolds, we improve this to estimates on the regularity scale. We apply this to prove a conjecture of Anderson that the collection of $4$-manifolds $(M^4,g)$ with $|\mathrm{Ric}_{M^4}|\leq 3$, $\mathrm{Vol}(M)>\mathrm{v}>0$, and $\mathrm{diam}(M)\leq D$ contains at most a finite number of diffeomorphism classes. A local version is used to show that noncollapsed $4$-manifolds with bounded Ricci curvature have a priori $L^2$ Riemannian curvature estimates.
DOI : 10.4007/annals.2015.182.3.5

Jeff Cheeger 1 ; Aaron Naber 2

1 Courant Institute of Mathematical Sciences, New York, NY
2 Northwestern University, Evanston, IL
@article{10_4007_annals_2015_182_3_5,
     author = {Jeff Cheeger and Aaron Naber},
     title = {Regularity of {Einstein} manifolds  and the codimension $4$ conjecture},
     journal = {Annals of mathematics},
     pages = {1093--1165},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2015},
     doi = {10.4007/annals.2015.182.3.5},
     mrnumber = {3418535},
     zbl = {06514752},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.5/}
}
TY  - JOUR
AU  - Jeff Cheeger
AU  - Aaron Naber
TI  - Regularity of Einstein manifolds  and the codimension $4$ conjecture
JO  - Annals of mathematics
PY  - 2015
SP  - 1093
EP  - 1165
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.5/
DO  - 10.4007/annals.2015.182.3.5
LA  - en
ID  - 10_4007_annals_2015_182_3_5
ER  - 
%0 Journal Article
%A Jeff Cheeger
%A Aaron Naber
%T Regularity of Einstein manifolds  and the codimension $4$ conjecture
%J Annals of mathematics
%D 2015
%P 1093-1165
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.5/
%R 10.4007/annals.2015.182.3.5
%G en
%F 10_4007_annals_2015_182_3_5
Jeff Cheeger; Aaron Naber. Regularity of Einstein manifolds  and the codimension $4$ conjecture. Annals of mathematics, Tome 182 (2015) no. 3, pp. 1093-1165. doi : 10.4007/annals.2015.182.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.5/

Cité par Sources :