Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields
Annals of mathematics, Tome 182 (2015) no. 3, pp. 855-943.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We generalize Kontsevich’s construction of $L_{\infty}$-derivations of polyvector fields from the affine space to an arbitrary smooth algebraic variety. More precisely, we construct a map (in the homotopy category) from Kontsevich’s graph complex to the deformation complex of the sheaf of polyvector fields on a smooth algebraic variety. We show that the action of Deligne-Drinfeld elements of the Grothendieck-Teichmüller Lie algebra on the cohomology of the sheaf of polyvector fields coincides with the action of odd components of the Chern character. Using this result, we deduce that the $\hat{A}$-genus in the Calaque-Van den Bergh formula for the isomorphism between harmonic and Hochschild structures can be replaced by a generalized $\hat{A}$-genus.
DOI : 10.4007/annals.2015.182.3.2

V. A. Dolgushev 1 ; C. L. Rogers 2 ; T. H. Willwacher 3

1 Department of Mathematics, Temple University, Philadelphia, PA
2 Institut für Mathematik und Informatik, Universität Greifswald, Greifswald, Germany
3 University of Zürich, Institute of Mathematics, Zürich, Switzerland
@article{10_4007_annals_2015_182_3_2,
     author = {V. A. Dolgushev and C. L. Rogers and T. H. Willwacher},
     title = {Kontsevich{\textquoteright}s graph complex, {GRT,} and the deformation complex of the sheaf of polyvector fields},
     journal = {Annals of mathematics},
     pages = {855--943},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2015},
     doi = {10.4007/annals.2015.182.3.2},
     mrnumber = {3418532},
     zbl = {06514749},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.2/}
}
TY  - JOUR
AU  - V. A. Dolgushev
AU  - C. L. Rogers
AU  - T. H. Willwacher
TI  - Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields
JO  - Annals of mathematics
PY  - 2015
SP  - 855
EP  - 943
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.2/
DO  - 10.4007/annals.2015.182.3.2
LA  - en
ID  - 10_4007_annals_2015_182_3_2
ER  - 
%0 Journal Article
%A V. A. Dolgushev
%A C. L. Rogers
%A T. H. Willwacher
%T Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields
%J Annals of mathematics
%D 2015
%P 855-943
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.2/
%R 10.4007/annals.2015.182.3.2
%G en
%F 10_4007_annals_2015_182_3_2
V. A. Dolgushev; C. L. Rogers; T. H. Willwacher. Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields. Annals of mathematics, Tome 182 (2015) no. 3, pp. 855-943. doi : 10.4007/annals.2015.182.3.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.3.2/

Cité par Sources :