The circle method and bounds for $L$-functions – IV: Subconvexity for twists of $\mathrm{GL}(3)$ $L$-functions
Annals of mathematics, Tome 182 (2015) no. 2, pp. 617-672.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\pi$ be an $\mathrm{SL}(3,\mathbb Z)$ Hecke-Maass cusp form satisfying the Ramanujan conjecture and the Selberg-Ramanujan conjecture, and let $\chi$ be a primitive Dirichlet character modulo $M$, which we assume to be prime for simplicity. We will prove that there is a computable absolute constant $\delta>0$ such that $$ L\left(\tfrac{1}{2},\pi\otimes\chi\right)\ll_{\pi} M^{\frac{3}{4}-\delta}. $$
DOI : 10.4007/annals.2015.182.2.6

Ritabrata Munshi 1

1 Tata Institute of Fundamental Research, Colaba, Mumbai, India
@article{10_4007_annals_2015_182_2_6,
     author = {Ritabrata Munshi},
     title = {The circle method and bounds for $L$-functions {\textendash} {IV:} {Subconvexity} for twists of $\mathrm{GL}(3)$ $L$-functions},
     journal = {Annals of mathematics},
     pages = {617--672},
     publisher = {mathdoc},
     volume = {182},
     number = {2},
     year = {2015},
     doi = {10.4007/annals.2015.182.2.6},
     mrnumber = {3418527},
     zbl = {06487149},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.6/}
}
TY  - JOUR
AU  - Ritabrata Munshi
TI  - The circle method and bounds for $L$-functions – IV: Subconvexity for twists of $\mathrm{GL}(3)$ $L$-functions
JO  - Annals of mathematics
PY  - 2015
SP  - 617
EP  - 672
VL  - 182
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.6/
DO  - 10.4007/annals.2015.182.2.6
LA  - en
ID  - 10_4007_annals_2015_182_2_6
ER  - 
%0 Journal Article
%A Ritabrata Munshi
%T The circle method and bounds for $L$-functions – IV: Subconvexity for twists of $\mathrm{GL}(3)$ $L$-functions
%J Annals of mathematics
%D 2015
%P 617-672
%V 182
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.6/
%R 10.4007/annals.2015.182.2.6
%G en
%F 10_4007_annals_2015_182_2_6
Ritabrata Munshi. The circle method and bounds for $L$-functions – IV: Subconvexity for twists of $\mathrm{GL}(3)$ $L$-functions. Annals of mathematics, Tome 182 (2015) no. 2, pp. 617-672. doi : 10.4007/annals.2015.182.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.6/

Cité par Sources :