Almost contact 5-manifolds are contact
Annals of mathematics, Tome 182 (2015) no. 2, pp. 429-490.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The existence of a contact structure is proved in any homotopy class of almost contact structures on a closed $5$-dimensional manifold.
DOI : 10.4007/annals.2015.182.2.2

Roger Casals 1 ; Dishant M. Pancholi 2 ; Francisco Presas 1

1 Instituto de Ciencias Matemáticas, C. Nicolás Cabrera, Madrid, Spain
2 Chennai Mathematical Institute, Kelambakkam, Siruseri, India
@article{10_4007_annals_2015_182_2_2,
     author = {Roger Casals and Dishant M. Pancholi and Francisco Presas},
     title = {Almost contact  5-manifolds are contact},
     journal = {Annals of mathematics},
     pages = {429--490},
     publisher = {mathdoc},
     volume = {182},
     number = {2},
     year = {2015},
     doi = {10.4007/annals.2015.182.2.2},
     mrnumber = {3418523},
     zbl = {06487145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.2/}
}
TY  - JOUR
AU  - Roger Casals
AU  - Dishant M. Pancholi
AU  - Francisco Presas
TI  - Almost contact  5-manifolds are contact
JO  - Annals of mathematics
PY  - 2015
SP  - 429
EP  - 490
VL  - 182
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.2/
DO  - 10.4007/annals.2015.182.2.2
LA  - en
ID  - 10_4007_annals_2015_182_2_2
ER  - 
%0 Journal Article
%A Roger Casals
%A Dishant M. Pancholi
%A Francisco Presas
%T Almost contact  5-manifolds are contact
%J Annals of mathematics
%D 2015
%P 429-490
%V 182
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.2/
%R 10.4007/annals.2015.182.2.2
%G en
%F 10_4007_annals_2015_182_2_2
Roger Casals; Dishant M. Pancholi; Francisco Presas. Almost contact  5-manifolds are contact. Annals of mathematics, Tome 182 (2015) no. 2, pp. 429-490. doi : 10.4007/annals.2015.182.2.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.2/

Cité par Sources :