The period-index problem for fields of transcendence degree $2$
Annals of mathematics, Tome 182 (2015) no. 2, pp. 391-427.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Using geometric methods we prove the standard period-index conjecture for the Brauer group of a field of transcendence degree $2$ over $\mathbf{F}_p$.
DOI : 10.4007/annals.2015.182.2.1

Max Lieblich 1

1 University of Washington, Seattle, WA
@article{10_4007_annals_2015_182_2_1,
     author = {Max Lieblich},
     title = {The period-index problem for  fields of transcendence degree $2$},
     journal = {Annals of mathematics},
     pages = {391--427},
     publisher = {mathdoc},
     volume = {182},
     number = {2},
     year = {2015},
     doi = {10.4007/annals.2015.182.2.1},
     mrnumber = {3418522},
     zbl = {06487144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.1/}
}
TY  - JOUR
AU  - Max Lieblich
TI  - The period-index problem for  fields of transcendence degree $2$
JO  - Annals of mathematics
PY  - 2015
SP  - 391
EP  - 427
VL  - 182
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.1/
DO  - 10.4007/annals.2015.182.2.1
LA  - en
ID  - 10_4007_annals_2015_182_2_1
ER  - 
%0 Journal Article
%A Max Lieblich
%T The period-index problem for  fields of transcendence degree $2$
%J Annals of mathematics
%D 2015
%P 391-427
%V 182
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.1/
%R 10.4007/annals.2015.182.2.1
%G en
%F 10_4007_annals_2015_182_2_1
Max Lieblich. The period-index problem for  fields of transcendence degree $2$. Annals of mathematics, Tome 182 (2015) no. 2, pp. 391-427. doi : 10.4007/annals.2015.182.2.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.2.1/

Cité par Sources :