The good pants homology and the Ehrenpreis Conjecture
Annals of mathematics, Tome 182 (2015) no. 1, pp. 1-72.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We develop the notion of the good pants homology and show that it agrees with the standard homology on closed surfaces. (Good pants are pairs of pants whose cuffs have the length nearly equal to some large number $R>0$.) Combined with our previous work on the Surface Subgroup Theorem, this yields a proof of the Ehrenpreis Conjecture.
DOI : 10.4007/annals.2015.182.1.1

Jeremy Kahn 1 ; Vladimir Markovic 2

1 CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016
2 Department of Mathematics, California Institute of Technology, Pasadena, CA 91125
@article{10_4007_annals_2015_182_1_1,
     author = {Jeremy Kahn and Vladimir Markovic},
     title = {The good pants homology and the {Ehrenpreis} {Conjecture}},
     journal = {Annals of mathematics},
     pages = {1--72},
     publisher = {mathdoc},
     volume = {182},
     number = {1},
     year = {2015},
     doi = {10.4007/annals.2015.182.1.1},
     mrnumber = {3374956},
     zbl = {06456005
},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.1.1/}
}
TY  - JOUR
AU  - Jeremy Kahn
AU  - Vladimir Markovic
TI  - The good pants homology and the Ehrenpreis Conjecture
JO  - Annals of mathematics
PY  - 2015
SP  - 1
EP  - 72
VL  - 182
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.1.1/
DO  - 10.4007/annals.2015.182.1.1
LA  - en
ID  - 10_4007_annals_2015_182_1_1
ER  - 
%0 Journal Article
%A Jeremy Kahn
%A Vladimir Markovic
%T The good pants homology and the Ehrenpreis Conjecture
%J Annals of mathematics
%D 2015
%P 1-72
%V 182
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.1.1/
%R 10.4007/annals.2015.182.1.1
%G en
%F 10_4007_annals_2015_182_1_1
Jeremy Kahn; Vladimir Markovic. The good pants homology and the Ehrenpreis Conjecture. Annals of mathematics, Tome 182 (2015) no. 1, pp. 1-72. doi : 10.4007/annals.2015.182.1.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.182.1.1/

Cité par Sources :