Voir la notice de l'article provenant de la source Annals of Mathematics website
@article{10_4007_annals_2015_181_3_1, author = {David Bessis}, title = {Finite complex reflection arrangements are $K(\pi,1)$}, journal = {Annals of mathematics}, pages = {809--904}, publisher = {mathdoc}, volume = {181}, number = {3}, year = {2015}, doi = {10.4007/annals.2015.181.3.1}, mrnumber = {3296817}, zbl = {06446405}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.3.1/} }
TY - JOUR AU - David Bessis TI - Finite complex reflection arrangements are $K(\pi,1)$ JO - Annals of mathematics PY - 2015 SP - 809 EP - 904 VL - 181 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.3.1/ DO - 10.4007/annals.2015.181.3.1 LA - en ID - 10_4007_annals_2015_181_3_1 ER -
David Bessis. Finite complex reflection arrangements are $K(\pi,1)$. Annals of mathematics, Tome 181 (2015) no. 3, pp. 809-904. doi : 10.4007/annals.2015.181.3.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.3.1/
Cité par Sources :