Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution
Annals of mathematics, Tome 181 (2015) no. 2, pp. 415-472.

Voir la notice de l'article provenant de la source Annals of Mathematics website

A pseudorandom generator $G_n:\{0,1\}^n\to \{0,1\}^m$ is hard for a propositional proof system $P$ if (roughly speaking) $P$ cannot efficiently prove the statement $G_n(x_1,\ldots,x_n)\neq b$ for any string $b\in\{0,1\}^m$. We present a function ($m\geq 2^{n^{\Omega(1)}}$) generator which is hard for $\mathrm{Res}(\epsilon\log n)$; here $\mathrm{Res}(k)$ is the propositional proof system that extends Resolution by allowing $k$-DNFs instead of clauses.
As a direct consequence of this result, we show that whenever $t\geq n^2$, every $\mathrm{Res}(\epsilon\log t)$ proof of the principle $\neg \mathrm{Circuit}_t(f_n)$ (asserting that the circuit size of a Boolean function $f_n$ in $n$ variables is greater than $t$) must have size $\exp(t^{\Omega(1)})$. In particular, $\mathrm{Res}(\log \log N)$ ($N\sim 2^n$ is the overall number of propositional variables) does not possess efficient proofs of ${\bf NP}\not\subseteq {\bf P}/\mathrm{poly}$. Similar results hold also for the system PCR (the natural common extension of Polynomial Calculus and Resolution) when the characteristic of the ground field is different from 2.
As a byproduct, we also improve on the small restriction switching lemma due to Segerlind, Buss and Impagliazzo by removing a square root from the final bound. This in particular implies that the (moderately) weak pigeonhole principle $\mathrm{PHP}^{2n}_n$ is hard for $\mathrm{Res}(\epsilon\log n/\log\log n)$.
DOI : 10.4007/annals.2015.181.2.1

Alexander A. Razborov 1

1 Institute for Advanced Study, Princeton, NJ, On leave from Steklov Mathematical Institute, Moscow, Russia
@article{10_4007_annals_2015_181_2_1,
     author = {Alexander A. Razborov},
     title = {Pseudorandom generators hard for $k${-DNF} resolution and polynomial calculus resolution},
     journal = {Annals of mathematics},
     pages = {415--472},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2015},
     doi = {10.4007/annals.2015.181.2.1},
     mrnumber = {3275844},
     zbl = {06399441},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.2.1/}
}
TY  - JOUR
AU  - Alexander A. Razborov
TI  - Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution
JO  - Annals of mathematics
PY  - 2015
SP  - 415
EP  - 472
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.2.1/
DO  - 10.4007/annals.2015.181.2.1
LA  - en
ID  - 10_4007_annals_2015_181_2_1
ER  - 
%0 Journal Article
%A Alexander A. Razborov
%T Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution
%J Annals of mathematics
%D 2015
%P 415-472
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.2.1/
%R 10.4007/annals.2015.181.2.1
%G en
%F 10_4007_annals_2015_181_2_1
Alexander A. Razborov. Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution. Annals of mathematics, Tome 181 (2015) no. 2, pp. 415-472. doi : 10.4007/annals.2015.181.2.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.2.1/

Cité par Sources :