Small gaps between primes
Annals of mathematics, Tome 181 (2015) no. 1, pp. 383-413.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We introduce a refinement of the GPY sieve method for studying prime $k$-tuples and small gaps between primes. This refinement avoids previous limitations of the method and allows us to show that for each $k$, the prime $k$-tuples conjecture holds for a positive proportion of admissible $k$-tuples. In particular, $\liminf_{n}(p_{n+m}-p_n)<\infty$ for every integer $m$. We also show that $\liminf(p_{n+1}-p_n)\le 600$ and, if we assume the Elliott-Halberstam conjecture, that $\liminf_n(p_{n+1}-p_n)\le 12$ and $\liminf_n (p_{n+2}-p_n)\le 600$.
DOI : 10.4007/annals.2015.181.1.7

James Maynard 1

1 Magdalen College, Oxford, Oxford OX1 4AU, United Kingdom
@article{10_4007_annals_2015_181_1_7,
     author = {James Maynard},
     title = {Small gaps between primes},
     journal = {Annals of mathematics},
     pages = {383--413},
     publisher = {mathdoc},
     volume = {181},
     number = {1},
     year = {2015},
     doi = {10.4007/annals.2015.181.1.7},
     mrnumber = {3272929},
     zbl = {1306.11073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.7/}
}
TY  - JOUR
AU  - James Maynard
TI  - Small gaps between primes
JO  - Annals of mathematics
PY  - 2015
SP  - 383
EP  - 413
VL  - 181
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.7/
DO  - 10.4007/annals.2015.181.1.7
LA  - en
ID  - 10_4007_annals_2015_181_1_7
ER  - 
%0 Journal Article
%A James Maynard
%T Small gaps between primes
%J Annals of mathematics
%D 2015
%P 383-413
%V 181
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.7/
%R 10.4007/annals.2015.181.1.7
%G en
%F 10_4007_annals_2015_181_1_7
James Maynard. Small gaps between primes. Annals of mathematics, Tome 181 (2015) no. 1, pp. 383-413. doi : 10.4007/annals.2015.181.1.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.7/

Cité par Sources :