Solution of the minimum modulus problem for covering systems
Annals of mathematics, Tome 181 (2015) no. 1, pp. 361-382.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We answer a question of Erdős by showing that the least modulus of a distinct covering system is at most $ 10^{16}$.
DOI : 10.4007/annals.2015.181.1.6

Bob Hough 1

1 Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
@article{10_4007_annals_2015_181_1_6,
     author = {Bob Hough},
     title = {Solution of the minimum modulus problem for covering systems},
     journal = {Annals of mathematics},
     pages = {361--382},
     publisher = {mathdoc},
     volume = {181},
     number = {1},
     year = {2015},
     doi = {10.4007/annals.2015.181.1.6},
     mrnumber = {3272928},
     zbl = {06383666},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.6/}
}
TY  - JOUR
AU  - Bob Hough
TI  - Solution of the minimum modulus problem for covering systems
JO  - Annals of mathematics
PY  - 2015
SP  - 361
EP  - 382
VL  - 181
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.6/
DO  - 10.4007/annals.2015.181.1.6
LA  - en
ID  - 10_4007_annals_2015_181_1_6
ER  - 
%0 Journal Article
%A Bob Hough
%T Solution of the minimum modulus problem for covering systems
%J Annals of mathematics
%D 2015
%P 361-382
%V 181
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.6/
%R 10.4007/annals.2015.181.1.6
%G en
%F 10_4007_annals_2015_181_1_6
Bob Hough. Solution of the minimum modulus problem for covering systems. Annals of mathematics, Tome 181 (2015) no. 1, pp. 361-382. doi : 10.4007/annals.2015.181.1.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2015.181.1.6/

Cité par Sources :