The Hodge theory of Soergel bimodules
Annals of mathematics, Tome 180 (2014) no. 3, pp. 1089-1136.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove Soergel’s conjecture on the characters of indecomposable
Soergel bimodules. We deduce that Kazhdan-Lusztig polynomials have positive coefficients for arbitrary Coxeter systems. Using results of Soergel one may deduce an algebraic proof of the Kazhdan-Lusztig conjecture.
DOI : 10.4007/annals.2014.180.3.6

Ben Elias 1 ; Geordie Williamson 2

1 Massachusetts Institute of Technology, Cambridge, MA
2 Max-Planck-Institut für Mathematik, Bonn, Germany
@article{10_4007_annals_2014_180_3_6,
     author = {Ben Elias and Geordie Williamson},
     title = {The {Hodge} theory of {Soergel} bimodules},
     journal = {Annals of mathematics},
     pages = {1089--1136},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.180.3.6},
     mrnumber = {3245013},
     zbl = {06380813},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.6/}
}
TY  - JOUR
AU  - Ben Elias
AU  - Geordie Williamson
TI  - The Hodge theory of Soergel bimodules
JO  - Annals of mathematics
PY  - 2014
SP  - 1089
EP  - 1136
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.6/
DO  - 10.4007/annals.2014.180.3.6
LA  - en
ID  - 10_4007_annals_2014_180_3_6
ER  - 
%0 Journal Article
%A Ben Elias
%A Geordie Williamson
%T The Hodge theory of Soergel bimodules
%J Annals of mathematics
%D 2014
%P 1089-1136
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.6/
%R 10.4007/annals.2014.180.3.6
%G en
%F 10_4007_annals_2014_180_3_6
Ben Elias; Geordie Williamson. The Hodge theory of Soergel bimodules. Annals of mathematics, Tome 180 (2014) no. 3, pp. 1089-1136. doi : 10.4007/annals.2014.180.3.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.6/

Cité par Sources :