Spherical Hecke algebras for Kac-Moody groups over local fields
Annals of mathematics, Tome 180 (2014) no. 3, pp. 1051-1087.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We define the spherical Hecke algebra $\mathcal{H}$ for an almost split Kac-Moody group $G$ over a local non-archimedean field. We use the hovel $\mathscr I$ associated to this situation, which is the analogue of the Bruhat-Tits building for a reductive group. The stabilizer $K$ of a special point on the standard apartment plays the role of a maximal open compact subgroup. We can define $\mathcal{H}$ as the algebra of $K$-bi-invariant functions on $G$ with almost finite support. As two points in the hovel are not always in a same apartment, this support has to be in some large subsemigroup $G^+$ of $G$. We prove that the structure constants of $\mathcal{H}$ are polynomials in the cardinality of the residue field, with integer coefficients depending on the geometry of the standard apartment. We also prove the Satake isomorphism between $\mathcal{H}$ and the algebra of Weyl invariant elements in some completion of a Laurent polynomial algebra. In particular, $\mathcal{H}$ is always commutative. Actually, our results apply to abstract “locally finite” hovels, so that we can define the spherical algebra with unequal parameters.
DOI : 10.4007/annals.2014.180.3.5

Stéphane Gaussent 1 ; Guy Rousseau 2

1 Université de Lyon, Institut Camille Jordan (UMR 5208), Université Jean Monnet, Saint-Etienne, F-42023, France
2 Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502 and CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandœuvre lès Nancy, F-54506, France
@article{10_4007_annals_2014_180_3_5,
     author = {St\'ephane Gaussent and Guy Rousseau},
     title = {Spherical  {Hecke} algebras for {Kac-Moody} groups over local fields},
     journal = {Annals of mathematics},
     pages = {1051--1087},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.180.3.5},
     mrnumber = {3245012},
     zbl = {1315.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/}
}
TY  - JOUR
AU  - Stéphane Gaussent
AU  - Guy Rousseau
TI  - Spherical  Hecke algebras for Kac-Moody groups over local fields
JO  - Annals of mathematics
PY  - 2014
SP  - 1051
EP  - 1087
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/
DO  - 10.4007/annals.2014.180.3.5
LA  - en
ID  - 10_4007_annals_2014_180_3_5
ER  - 
%0 Journal Article
%A Stéphane Gaussent
%A Guy Rousseau
%T Spherical  Hecke algebras for Kac-Moody groups over local fields
%J Annals of mathematics
%D 2014
%P 1051-1087
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/
%R 10.4007/annals.2014.180.3.5
%G en
%F 10_4007_annals_2014_180_3_5
Stéphane Gaussent; Guy Rousseau. Spherical  Hecke algebras for Kac-Moody groups over local fields. Annals of mathematics, Tome 180 (2014) no. 3, pp. 1051-1087. doi : 10.4007/annals.2014.180.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/

Cité par Sources :