The geometry of the moduli space of odd spin curves
Annals of mathematics, Tome 180 (2014) no. 3, pp. 927-970.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The spin moduli space $\overline{\mathcal{S}}_g$ is the parameter space of theta characteristics (spin structures) on stable curves of genus $g$. It has two connected components, $\overline{\mathcal{S}}_g^-$ and $\overline{\mathcal{S}}_g^+$, depending on the parity of the spin structure. We establish a complete birational classification by Kodaira dimension of the odd component $\overline{\mathcal{S}}_g^-$ of the spin moduli space. We show that $\overline{\mathcal{S}}_g^-$ is uniruled for $g<12$ and even unirational for $g\leq 8$. In this range, introducing the concept of cluster for the Mukai variety whose one-dimensional linear sections are general canonical curves of genus $g$, we construct new birational models of $\overline{\mathcal{S}}_g^-$. These we then use to explicitly describe the birational structure of $\overline{\mathcal{S}}_g^-$. For instance, $\overline{\mathcal{S}}_8^-$ is birational to a locally trivial $\textbf{P}^7$-bundle over the moduli space of elliptic curves with seven pairs of marked points. For $g\geq 12$, we prove that $\overline{\mathcal{S}}_g^-$ is a variety of general type. In genus $12$, this requires the construction of a counterexample to the Slope Conjecture on effective divisors on the moduli space of stable curves of genus $12$.
DOI : 10.4007/annals.2014.180.3.3

Gavril Farkas 1 ; Alessandro Verra 2

1 Humboldt-Universität zu Berlin, Berlin, Germany
2 Universitá Roma Tre, Roma, Italy
@article{10_4007_annals_2014_180_3_3,
     author = {Gavril Farkas and Alessandro Verra},
     title = {The geometry of the moduli space of odd spin curves},
     journal = {Annals of mathematics},
     pages = {927--970},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.180.3.3},
     mrnumber = {3245010},
     zbl = {06380810},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.3/}
}
TY  - JOUR
AU  - Gavril Farkas
AU  - Alessandro Verra
TI  - The geometry of the moduli space of odd spin curves
JO  - Annals of mathematics
PY  - 2014
SP  - 927
EP  - 970
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.3/
DO  - 10.4007/annals.2014.180.3.3
LA  - en
ID  - 10_4007_annals_2014_180_3_3
ER  - 
%0 Journal Article
%A Gavril Farkas
%A Alessandro Verra
%T The geometry of the moduli space of odd spin curves
%J Annals of mathematics
%D 2014
%P 927-970
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.3/
%R 10.4007/annals.2014.180.3.3
%G en
%F 10_4007_annals_2014_180_3_3
Gavril Farkas; Alessandro Verra. The geometry of the moduli space of odd spin curves. Annals of mathematics, Tome 180 (2014) no. 3, pp. 927-970. doi : 10.4007/annals.2014.180.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.3/

Cité par Sources :