Euler systems for Rankin–Selberg convolutions of modular forms
Annals of mathematics, Tome 180 (2014) no. 2, pp. 653-771.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We construct a Euler system in the cohomology of the tensor product of the Galois representations attached to two modular forms, using elements in the higher Chow groups of products of modular curves. We use these elements to prove a finiteness theorem for the strict Selmer group of the Galois representation when the associated $p$-adic Rankin–Selberg $L$-function is nonvanishing at $s = 1$.
DOI : 10.4007/annals.2014.180.2.6

Antonio Lei 1 ; David Loeffler 2 ; Sarah Livia Zerbes 3

1 McGill University, Montreal, QC, Canada
2 Mathematics Institute, University of Warwick, Coventry, UK
3 University College London, London, UK
@article{10_4007_annals_2014_180_2_6,
     author = {Antonio Lei and David Loeffler and Sarah Livia Zerbes},
     title = {Euler systems for {Rankin{\textendash}Selberg} convolutions of modular forms},
     journal = {Annals of mathematics},
     pages = {653--771},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.180.2.6},
     mrnumber = {3224721},
     zbl = {1315.11044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.6/}
}
TY  - JOUR
AU  - Antonio Lei
AU  - David Loeffler
AU  - Sarah Livia Zerbes
TI  - Euler systems for Rankin–Selberg convolutions of modular forms
JO  - Annals of mathematics
PY  - 2014
SP  - 653
EP  - 771
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.6/
DO  - 10.4007/annals.2014.180.2.6
LA  - en
ID  - 10_4007_annals_2014_180_2_6
ER  - 
%0 Journal Article
%A Antonio Lei
%A David Loeffler
%A Sarah Livia Zerbes
%T Euler systems for Rankin–Selberg convolutions of modular forms
%J Annals of mathematics
%D 2014
%P 653-771
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.6/
%R 10.4007/annals.2014.180.2.6
%G en
%F 10_4007_annals_2014_180_2_6
Antonio Lei; David Loeffler; Sarah Livia Zerbes. Euler systems for Rankin–Selberg convolutions of modular forms. Annals of mathematics, Tome 180 (2014) no. 2, pp. 653-771. doi : 10.4007/annals.2014.180.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.6/

Cité par Sources :