Sets of integers with no large sum-free subset
Annals of mathematics, Tome 180 (2014) no. 2, pp. 621-652.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Answering a question of P. Erdős from 1965, we show that for every $\varepsilon> 0$ there is a set $A$ of $n$ integers with the following property: every set $A’ \subset A$ with at least $\left(\frac{1}{3} + \varepsilon\right) n$ elements contains three distinct elements $x,y,z$ with $x + y = z$.
DOI : 10.4007/annals.2014.180.2.5

Sean Eberhard 1 ; Ben Green 1 ; Freddie Manners 1

1 Mathematical Institute, University of Oxford, Oxford, United Kingdom
@article{10_4007_annals_2014_180_2_5,
     author = {Sean Eberhard and Ben Green and Freddie Manners},
     title = {Sets of integers with no large sum-free subset},
     journal = {Annals of mathematics},
     pages = {621--652},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.180.2.5},
     mrnumber = {3224720},
     zbl = {06346459},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.5/}
}
TY  - JOUR
AU  - Sean Eberhard
AU  - Ben Green
AU  - Freddie Manners
TI  - Sets of integers with no large sum-free subset
JO  - Annals of mathematics
PY  - 2014
SP  - 621
EP  - 652
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.5/
DO  - 10.4007/annals.2014.180.2.5
LA  - en
ID  - 10_4007_annals_2014_180_2_5
ER  - 
%0 Journal Article
%A Sean Eberhard
%A Ben Green
%A Freddie Manners
%T Sets of integers with no large sum-free subset
%J Annals of mathematics
%D 2014
%P 621-652
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.5/
%R 10.4007/annals.2014.180.2.5
%G en
%F 10_4007_annals_2014_180_2_5
Sean Eberhard; Ben Green; Freddie Manners. Sets of integers with no large sum-free subset. Annals of mathematics, Tome 180 (2014) no. 2, pp. 621-652. doi : 10.4007/annals.2014.180.2.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.5/

Cité par Sources :