Stable logarithmic maps to Deligne–Faltings pairs I
Annals of mathematics, Tome 180 (2014) no. 2, pp. 455-521.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We introduce a new compactification of the space of relative stable maps. This approach uses logarithmic geoemetry in the sense of Kato-Fontaine-Illusie without taking expansions of the target. The underlying structures of the stable logarithmic maps are stable in the usual sense.
DOI : 10.4007/annals.2014.180.2.2

Qile Chen 1

1 Columbia University, New York, NY
@article{10_4007_annals_2014_180_2_2,
     author = {Qile Chen},
     title = {Stable logarithmic maps to {Deligne{\textendash}Faltings} pairs {I}},
     journal = {Annals of mathematics},
     pages = {455--521},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.180.2.2},
     mrnumber = {3224717},
     zbl = {1311.14028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.2/}
}
TY  - JOUR
AU  - Qile Chen
TI  - Stable logarithmic maps to Deligne–Faltings pairs I
JO  - Annals of mathematics
PY  - 2014
SP  - 455
EP  - 521
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.2/
DO  - 10.4007/annals.2014.180.2.2
LA  - en
ID  - 10_4007_annals_2014_180_2_2
ER  - 
%0 Journal Article
%A Qile Chen
%T Stable logarithmic maps to Deligne–Faltings pairs I
%J Annals of mathematics
%D 2014
%P 455-521
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.2/
%R 10.4007/annals.2014.180.2.2
%G en
%F 10_4007_annals_2014_180_2_2
Qile Chen. Stable logarithmic maps to Deligne–Faltings pairs I. Annals of mathematics, Tome 180 (2014) no. 2, pp. 455-521. doi : 10.4007/annals.2014.180.2.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.2.2/

Cité par Sources :