Rational points on pencils of conics and quadrics with many degenerate fibres
Annals of mathematics, Tome 180 (2014) no. 1, pp. 381-402.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For any pencil of conics or higher-dimensional quadrics over $\mathbb{Q}$, with all degenerate fibres defined over $\mathbb{Q}$, we show that the Brauer–Manin obstruction controls weak approximation. The proof is based on the Hasse principle and weak approximation for some special intersections of quadrics over $\mathbb{Q}$, which is a consequence of recent advances in additive combinatorics.
DOI : 10.4007/annals.2014.180.1.8

Tim D. Browning 1 ; Lilian Matthiesen 2 ; Alexei N. Skorobogatov 3

1 School of Mathematics, University of Bristol, Bristol BS8, 1TW, Bristol U.K.
2 Institut de Mathématiques de Jussieu --- Paris Rive Gauche, 75205 Paris Cedex 13, France
3 Imperial College London, London SW7 2AZ, United Kingdom and<br/> Institute for the Information Transmission Problems, Moscow, Russia
@article{10_4007_annals_2014_180_1_8,
     author = {Tim D. Browning and Lilian Matthiesen and Alexei N. Skorobogatov},
     title = {Rational points on pencils of conics and quadrics with many degenerate fibres},
     journal = {Annals of mathematics},
     pages = {381--402},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2014},
     doi = {10.4007/annals.2014.180.1.8},
     mrnumber = {3194818},
     zbl = {06316073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.8/}
}
TY  - JOUR
AU  - Tim D. Browning
AU  - Lilian Matthiesen
AU  - Alexei N. Skorobogatov
TI  - Rational points on pencils of conics and quadrics with many degenerate fibres
JO  - Annals of mathematics
PY  - 2014
SP  - 381
EP  - 402
VL  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.8/
DO  - 10.4007/annals.2014.180.1.8
LA  - en
ID  - 10_4007_annals_2014_180_1_8
ER  - 
%0 Journal Article
%A Tim D. Browning
%A Lilian Matthiesen
%A Alexei N. Skorobogatov
%T Rational points on pencils of conics and quadrics with many degenerate fibres
%J Annals of mathematics
%D 2014
%P 381-402
%V 180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.8/
%R 10.4007/annals.2014.180.1.8
%G en
%F 10_4007_annals_2014_180_1_8
Tim D. Browning; Lilian Matthiesen; Alexei N. Skorobogatov. Rational points on pencils of conics and quadrics with many degenerate fibres. Annals of mathematics, Tome 180 (2014) no. 1, pp. 381-402. doi : 10.4007/annals.2014.180.1.8. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.8/

Cité par Sources :