Cyclic extensions and the local lifting problem
Annals of mathematics, Tome 180 (2014) no. 1, pp. 233-284.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The local Oort conjecture states that, if $\Gamma$ is cyclic and $k$ is an algebraically closed field of characteristic $p$, then all $\Gamma$-extensions of $k[[t]]$ should lift to characteristic zero. We prove a critical case of this conjecture. In particular, we show that the conjecture is always true when $v_p(|\Gamma|) \leq 3$ and is true for arbitrarily highly $p$-divisible cyclic groups $\Gamma$ when a certain condition on the higher ramification filtration is satisfied.
DOI : 10.4007/annals.2014.180.1.5

Andrew Obus 1 ; Stefan Wewers 2

1 Department of Mathematics, University of Virginia, Charlottesville VA 22904
2 Institut für Reine Mathematik, Universität Ulm, 89081 Ulm, Germany
@article{10_4007_annals_2014_180_1_5,
     author = {Andrew Obus and Stefan Wewers},
     title = {Cyclic extensions and the local lifting problem},
     journal = {Annals of mathematics},
     pages = {233--284},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2014},
     doi = {10.4007/annals.2014.180.1.5},
     mrnumber = {3194815},
     zbl = {06316070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.5/}
}
TY  - JOUR
AU  - Andrew Obus
AU  - Stefan Wewers
TI  - Cyclic extensions and the local lifting problem
JO  - Annals of mathematics
PY  - 2014
SP  - 233
EP  - 284
VL  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.5/
DO  - 10.4007/annals.2014.180.1.5
LA  - en
ID  - 10_4007_annals_2014_180_1_5
ER  - 
%0 Journal Article
%A Andrew Obus
%A Stefan Wewers
%T Cyclic extensions and the local lifting problem
%J Annals of mathematics
%D 2014
%P 233-284
%V 180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.5/
%R 10.4007/annals.2014.180.1.5
%G en
%F 10_4007_annals_2014_180_1_5
Andrew Obus; Stefan Wewers. Cyclic extensions and the local lifting problem. Annals of mathematics, Tome 180 (2014) no. 1, pp. 233-284. doi : 10.4007/annals.2014.180.1.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.5/

Cité par Sources :