Energy quantization for Willmore surfaces and applications
Annals of mathematics, Tome 180 (2014) no. 1, pp. 87-136.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove a bubble-neck decomposition together with an energy quantization result for sequences of Willmore surfaces into ${\mathbb R}^m$ with uniformly bounded energy and nondegenerating conformal type. We deduce the strong compactness of Willmore closed surfaces of a given genus modulo the Möbius group action, below some energy threshold.
DOI : 10.4007/annals.2014.180.1.2

Yann Bernard 1 ; Tristan Rivière 2

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regenseburg, Germany
2 Department of Mathematics, ETH Zentrum, 8092 Zürich, Switzerland
@article{10_4007_annals_2014_180_1_2,
     author = {Yann Bernard and Tristan Rivi\`ere},
     title = {Energy quantization for {Willmore} surfaces and applications},
     journal = {Annals of mathematics},
     pages = {87--136},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2014},
     doi = {10.4007/annals.2014.180.1.2},
     mrnumber = {3194812},
     zbl = {06316067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.2/}
}
TY  - JOUR
AU  - Yann Bernard
AU  - Tristan Rivière
TI  - Energy quantization for Willmore surfaces and applications
JO  - Annals of mathematics
PY  - 2014
SP  - 87
EP  - 136
VL  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.2/
DO  - 10.4007/annals.2014.180.1.2
LA  - en
ID  - 10_4007_annals_2014_180_1_2
ER  - 
%0 Journal Article
%A Yann Bernard
%A Tristan Rivière
%T Energy quantization for Willmore surfaces and applications
%J Annals of mathematics
%D 2014
%P 87-136
%V 180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.2/
%R 10.4007/annals.2014.180.1.2
%G en
%F 10_4007_annals_2014_180_1_2
Yann Bernard; Tristan Rivière. Energy quantization for Willmore surfaces and applications. Annals of mathematics, Tome 180 (2014) no. 1, pp. 87-136. doi : 10.4007/annals.2014.180.1.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.1.2/

Cité par Sources :