Bounded gaps between primes
Annals of mathematics, Tome 179 (2014) no. 3, pp. 1121-1174.

Voir la notice de l'article provenant de la source Annals of Mathematics website

It is proved that $$ \liminf_{n\to\infty}(p_{n+1}-p_n)<7\times 10^7, $$ where $p_n$ is the $n$-th prime.
Our method is a refinement of the recent work of Goldston, Pintz and Yıldırım on the small gaps between consecutive primes. A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime divisors only, but it is adequate for our purpose.
DOI : 10.4007/annals.2014.179.3.7

Yitang Zhang 1

1 Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824
@article{10_4007_annals_2014_179_3_7,
     author = {Yitang Zhang},
     title = {Bounded gaps between primes},
     journal = {Annals of mathematics},
     pages = {1121--1174},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.179.3.7},
     mrnumber = {3171761},
     zbl = {06302171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.7/}
}
TY  - JOUR
AU  - Yitang Zhang
TI  - Bounded gaps between primes
JO  - Annals of mathematics
PY  - 2014
SP  - 1121
EP  - 1174
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.7/
DO  - 10.4007/annals.2014.179.3.7
LA  - en
ID  - 10_4007_annals_2014_179_3_7
ER  - 
%0 Journal Article
%A Yitang Zhang
%T Bounded gaps between primes
%J Annals of mathematics
%D 2014
%P 1121-1174
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.7/
%R 10.4007/annals.2014.179.3.7
%G en
%F 10_4007_annals_2014_179_3_7
Yitang Zhang. Bounded gaps between primes. Annals of mathematics, Tome 179 (2014) no. 3, pp. 1121-1174. doi : 10.4007/annals.2014.179.3.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.7/

Cité par Sources :