Kodaira dimension and zeros of holomorphic one-forms
Annals of mathematics, Tome 179 (2014) no. 3, pp. 1109-1120.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that every holomorphic one-form on a smooth complex projective variety of general type must vanish at some point. The proof uses generic vanishing theory for Hodge modules on abelian varieties.
DOI : 10.4007/annals.2014.179.3.6

Mihnea Popa 1 ; Christian Schnell 2

1 Department of Mathematics, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607
2 Department of Mathematics, Stony Brook University, Stony Brook, NY 11794
@article{10_4007_annals_2014_179_3_6,
     author = {Mihnea Popa and Christian Schnell},
     title = {Kodaira dimension and zeros of holomorphic one-forms},
     journal = {Annals of mathematics},
     pages = {1109--1120},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.179.3.6},
     mrnumber = {3171760},
     zbl = {06302170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.6/}
}
TY  - JOUR
AU  - Mihnea Popa
AU  - Christian Schnell
TI  - Kodaira dimension and zeros of holomorphic one-forms
JO  - Annals of mathematics
PY  - 2014
SP  - 1109
EP  - 1120
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.6/
DO  - 10.4007/annals.2014.179.3.6
LA  - en
ID  - 10_4007_annals_2014_179_3_6
ER  - 
%0 Journal Article
%A Mihnea Popa
%A Christian Schnell
%T Kodaira dimension and zeros of holomorphic one-forms
%J Annals of mathematics
%D 2014
%P 1109-1120
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.6/
%R 10.4007/annals.2014.179.3.6
%G en
%F 10_4007_annals_2014_179_3_6
Mihnea Popa; Christian Schnell. Kodaira dimension and zeros of holomorphic one-forms. Annals of mathematics, Tome 179 (2014) no. 3, pp. 1109-1120. doi : 10.4007/annals.2014.179.3.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.6/

Cité par Sources :