Image of the Burau representation at $d$-th roots of unity
Annals of mathematics, Tome 179 (2014) no. 3, pp. 1041-1083.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that the image of the braid group under the monodromy action on the homology of a cyclic covering of degree $d$ of the projective line is an arithmetic group provided the number of branch points is sufficiently large compared to the degree $d$. This is deduced by proving the arithmeticity of the image of the braid group on $n+1$ letters under the Burau representation evaluated at $d$-th roots of unity when $n\geq 2d$.
DOI : 10.4007/annals.2014.179.3.4

T. N. Venkataramana 1

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 40005, India
@article{10_4007_annals_2014_179_3_4,
     author = {T. N. Venkataramana},
     title = {Image of the {Burau} representation at $d$-th roots of unity},
     journal = {Annals of mathematics},
     pages = {1041--1083},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.179.3.4},
     mrnumber = {3171758},
     zbl = {06302168},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.4/}
}
TY  - JOUR
AU  - T. N. Venkataramana
TI  - Image of the Burau representation at $d$-th roots of unity
JO  - Annals of mathematics
PY  - 2014
SP  - 1041
EP  - 1083
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.4/
DO  - 10.4007/annals.2014.179.3.4
LA  - en
ID  - 10_4007_annals_2014_179_3_4
ER  - 
%0 Journal Article
%A T. N. Venkataramana
%T Image of the Burau representation at $d$-th roots of unity
%J Annals of mathematics
%D 2014
%P 1041-1083
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.4/
%R 10.4007/annals.2014.179.3.4
%G en
%F 10_4007_annals_2014_179_3_4
T. N. Venkataramana. Image of the Burau representation at $d$-th roots of unity. Annals of mathematics, Tome 179 (2014) no. 3, pp. 1041-1083. doi : 10.4007/annals.2014.179.3.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.4/

Cité par Sources :