Recovering the good component of the Hilbert scheme
Annals of mathematics, Tome 179 (2014) no. 3, pp. 805-841.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give an explicit construction, for a flat map $X åS$ of algebraic spaces, of an ideal in the $n$’th symmetric product of $X$ over $S$. Blowing up this ideal is then shown to be isomorphic to the schematic closure in the Hilbert scheme of length $n$ subschemes of the locus of $n$ distinct points. This generalizes Haiman’s corresponding result for the affine complex plane. However, our construction of the ideal is very different from that of Haiman, using the formalism of divided powers rather than representation theory. In the nonflat case we obtain a similar result by replacing the $n$’th symmetric product by the $n$’th divided power product.
DOI : 10.4007/annals.2014.179.3.1

Torsten Ekedahl  ; Roy Skjelnes 1

1 KTH, Royal Institute of Technology, Stockholm, Sweden
@article{10_4007_annals_2014_179_3_1,
     author = {Torsten Ekedahl and Roy Skjelnes},
     title = {Recovering the good component of the {Hilbert} scheme},
     journal = {Annals of mathematics},
     pages = {805--841},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2014},
     doi = {10.4007/annals.2014.179.3.1},
     mrnumber = {3171755},
     zbl = {06302165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.1/}
}
TY  - JOUR
AU  - Torsten Ekedahl
AU  - Roy Skjelnes
TI  - Recovering the good component of the Hilbert scheme
JO  - Annals of mathematics
PY  - 2014
SP  - 805
EP  - 841
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.1/
DO  - 10.4007/annals.2014.179.3.1
LA  - en
ID  - 10_4007_annals_2014_179_3_1
ER  - 
%0 Journal Article
%A Torsten Ekedahl
%A Roy Skjelnes
%T Recovering the good component of the Hilbert scheme
%J Annals of mathematics
%D 2014
%P 805-841
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.1/
%R 10.4007/annals.2014.179.3.1
%G en
%F 10_4007_annals_2014_179_3_1
Torsten Ekedahl; Roy Skjelnes. Recovering the good component of the Hilbert scheme. Annals of mathematics, Tome 179 (2014) no. 3, pp. 805-841. doi : 10.4007/annals.2014.179.3.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.3.1/

Cité par Sources :