Counting points on hyperelliptic curves in average polynomial time
Annals of mathematics, Tome 179 (2014) no. 2, pp. 783-803.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $g \geq 1$, and let $Q \in \mathbf{Z}[x]$ be a monic, squarefree polynomial of degree $2g + 1$. For an odd prime $p$ not dividing the discriminant of $Q$, let $Z_p(T)$ denote the zeta function of the hyperelliptic curve of genus $g$ over the finite field $\mathbf{F}_p$ obtained by reducing the coefficients of the equation $y^2 = Q(x)$ modulo $p$. We present an explicit deterministic algorithm that given as input $Q$ and a positive integer $N$, computes $Z_p(T)$ simultaneously for all such primes $p < N$, whose average complexity per prime is polynomial in $g$, $\log N$, and the number of bits required to represent $Q$.
DOI : 10.4007/annals.2014.179.2.7

David Harvey 1

1 University of New South Wales, Sydney, Australia
@article{10_4007_annals_2014_179_2_7,
     author = {David Harvey},
     title = {Counting points on hyperelliptic curves in average polynomial time},
     journal = {Annals of mathematics},
     pages = {783--803},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.179.2.7},
     mrnumber = {3152945},
     zbl = {06284348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.7/}
}
TY  - JOUR
AU  - David Harvey
TI  - Counting points on hyperelliptic curves in average polynomial time
JO  - Annals of mathematics
PY  - 2014
SP  - 783
EP  - 803
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.7/
DO  - 10.4007/annals.2014.179.2.7
LA  - en
ID  - 10_4007_annals_2014_179_2_7
ER  - 
%0 Journal Article
%A David Harvey
%T Counting points on hyperelliptic curves in average polynomial time
%J Annals of mathematics
%D 2014
%P 783-803
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.7/
%R 10.4007/annals.2014.179.2.7
%G en
%F 10_4007_annals_2014_179_2_7
David Harvey. Counting points on hyperelliptic curves in average polynomial time. Annals of mathematics, Tome 179 (2014) no. 2, pp. 783-803. doi : 10.4007/annals.2014.179.2.7. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.7/

Cité par Sources :