Min-Max theory and the Willmore conjecture
Annals of mathematics, Tome 179 (2014) no. 2, pp. 683-782.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In 1965, T. J. Willmore conjectured that the integral of the square of the mean curvature of a torus immersed in $\mathbb{R}^3$ is at least $2\pi^2$. We prove this conjecture using the min-max theory of minimal surfaces.
DOI : 10.4007/annals.2014.179.2.6

Fernando C. Marques 1 ; André Neves 2

1 IMPA, Rio de Janeiro, Brazil
2 Imperial College London, South Kensington Campus, London, UK
@article{10_4007_annals_2014_179_2_6,
     author = {Fernando C. Marques and Andr\'e Neves},
     title = {Min-Max theory and  the {Willmore} conjecture},
     journal = {Annals of mathematics},
     pages = {683--782},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.179.2.6},
     mrnumber = {3152944},
     zbl = {06284347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.6/}
}
TY  - JOUR
AU  - Fernando C. Marques
AU  - André Neves
TI  - Min-Max theory and  the Willmore conjecture
JO  - Annals of mathematics
PY  - 2014
SP  - 683
EP  - 782
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.6/
DO  - 10.4007/annals.2014.179.2.6
LA  - en
ID  - 10_4007_annals_2014_179_2_6
ER  - 
%0 Journal Article
%A Fernando C. Marques
%A André Neves
%T Min-Max theory and  the Willmore conjecture
%J Annals of mathematics
%D 2014
%P 683-782
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.6/
%R 10.4007/annals.2014.179.2.6
%G en
%F 10_4007_annals_2014_179_2_6
Fernando C. Marques; André Neves. Min-Max theory and  the Willmore conjecture. Annals of mathematics, Tome 179 (2014) no. 2, pp. 683-782. doi : 10.4007/annals.2014.179.2.6. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.6/

Cité par Sources :