On the diameter of permutation groups
Annals of mathematics, Tome 179 (2014) no. 2, pp. 611-658.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Given a finite group $G$ and a set $A$ of generators, the diameter
$\mathrm{diam}(\Gamma(G,A))$ of the Cayley graph $\Gamma(G,A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding $\mathrm{diam}(G):= \mathrm{max}_A\mathrm{diam}(\Gamma(G,A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$, but the best previously known upper bound was exponential in $\sqrt{n \log n}$. We give a quasipolynomial upper bound, namely, \[\mathrm{diam}(G) = \mathrm{exp}\left(O((\log n)^4 \log\log n)\right) = \mathrm{exp}\left((\log \log |G|)^{O(1)}\right)\] for $G = \mathrm{Sym}(n)$ or $G = \mathrm{Alt}(n)$, where the implied constants are absolute. This addresses a key open case of Babai’s conjecture on diameters of simple groups. By a result of Babai and Seress (1992), our bound also implies a quasipolynomial upper bound on the diameter of all transitive permutation groups of degree $n$.
DOI : 10.4007/annals.2014.179.2.4

Harald A. Helfgott 1 ; Ákos Seress 2

1 École Normale Supérieure, Paris, France
2 The University of Western Australia, Crawley, Australia and The Ohio State University, Columbus, OH
@article{10_4007_annals_2014_179_2_4,
     author = {Harald A. Helfgott and \'Akos Seress},
     title = {On the diameter of permutation groups},
     journal = {Annals of mathematics},
     pages = {611--658},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.179.2.4},
     mrnumber = {3152942},
     zbl = {06284345},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.4/}
}
TY  - JOUR
AU  - Harald A. Helfgott
AU  - Ákos Seress
TI  - On the diameter of permutation groups
JO  - Annals of mathematics
PY  - 2014
SP  - 611
EP  - 658
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.4/
DO  - 10.4007/annals.2014.179.2.4
LA  - en
ID  - 10_4007_annals_2014_179_2_4
ER  - 
%0 Journal Article
%A Harald A. Helfgott
%A Ákos Seress
%T On the diameter of permutation groups
%J Annals of mathematics
%D 2014
%P 611-658
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.4/
%R 10.4007/annals.2014.179.2.4
%G en
%F 10_4007_annals_2014_179_2_4
Harald A. Helfgott; Ákos Seress. On the diameter of permutation groups. Annals of mathematics, Tome 179 (2014) no. 2, pp. 611-658. doi : 10.4007/annals.2014.179.2.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.4/

Cité par Sources :