Limit theorems for translation flows
Annals of mathematics, Tome 179 (2014) no. 2, pp. 431-499.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The aim of this paper is to obtain an asymptotic expansion for ergodic integrals of translation flows on flat surfaces of higher genus (Theorem 1) and to give a limit theorem for these flows (Theorem 2).
DOI : 10.4007/annals.2014.179.2.2

Alexander I. Bufetov 1

1 Laboratoire d'Analyse, Topologie, Probabilités, Aix-Marseille Université, CNRS, the Steklov Institute of Mathematics, the Institute for Information Transmission Problems, National Research University Higher School of Economics, the Independent University of Moscow, Rice University
@article{10_4007_annals_2014_179_2_2,
     author = {Alexander I. Bufetov},
     title = {Limit theorems for translation flows},
     journal = {Annals of mathematics},
     pages = {431--499},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.179.2.2},
     mrnumber = {3152940},
     zbl = {06284343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.2/}
}
TY  - JOUR
AU  - Alexander I. Bufetov
TI  - Limit theorems for translation flows
JO  - Annals of mathematics
PY  - 2014
SP  - 431
EP  - 499
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.2/
DO  - 10.4007/annals.2014.179.2.2
LA  - en
ID  - 10_4007_annals_2014_179_2_2
ER  - 
%0 Journal Article
%A Alexander I. Bufetov
%T Limit theorems for translation flows
%J Annals of mathematics
%D 2014
%P 431-499
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.2/
%R 10.4007/annals.2014.179.2.2
%G en
%F 10_4007_annals_2014_179_2_2
Alexander I. Bufetov. Limit theorems for translation flows. Annals of mathematics, Tome 179 (2014) no. 2, pp. 431-499. doi : 10.4007/annals.2014.179.2.2. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.2/

Cité par Sources :