A product theorem in free groups
Annals of mathematics, Tome 179 (2014) no. 2, pp. 405-429.

Voir la notice de l'article provenant de la source Annals of Mathematics website

If $A$ is a finite subset of a free group with at least two noncommuting elements, then $|A\cdot A\cdot A|\geq\frac{|A|^2}{(\log |A|)^{O(1)}}$. More generally, the same conclusion holds in an arbitrary virtually free group, unless $A$ generates a virtually cyclic subgroup. The central part of the proof of this result is carried on by estimating the number of collisions in multiple products $A_1\cdot\ldots\cdot A_k$. We include a few simple observations showing that in this “statistical” context the analogue of the fundamental Plünnecke-Ruzsa theory looks particularly simple and appealing.
DOI : 10.4007/annals.2014.179.2.1

Alexander A. Razborov 1

1 Steklov Mathematical Institute, Moscow, Russia and Institute for Advanced Study, Princeton, NJ
@article{10_4007_annals_2014_179_2_1,
     author = {Alexander A. Razborov},
     title = {A product theorem in free groups},
     journal = {Annals of mathematics},
     pages = {405--429},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2014},
     doi = {10.4007/annals.2014.179.2.1},
     mrnumber = {3152939},
     zbl = {06284342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.1/}
}
TY  - JOUR
AU  - Alexander A. Razborov
TI  - A product theorem in free groups
JO  - Annals of mathematics
PY  - 2014
SP  - 405
EP  - 429
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.1/
DO  - 10.4007/annals.2014.179.2.1
LA  - en
ID  - 10_4007_annals_2014_179_2_1
ER  - 
%0 Journal Article
%A Alexander A. Razborov
%T A product theorem in free groups
%J Annals of mathematics
%D 2014
%P 405-429
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.1/
%R 10.4007/annals.2014.179.2.1
%G en
%F 10_4007_annals_2014_179_2_1
Alexander A. Razborov. A product theorem in free groups. Annals of mathematics, Tome 179 (2014) no. 2, pp. 405-429. doi : 10.4007/annals.2014.179.2.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.179.2.1/

Cité par Sources :