Stationary measures and invariant subsets of homogeneous spaces (III)
Annals of mathematics, Tome 178 (2013) no. 3, pp. 1017-1059.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $G$ be a real Lie group, $\Lambda$ be a lattice in $G$ and $\Gamma$ be a compactly generated closed subgroup of $G$. If the Zariski closure of the group $\mathrm{Ad} (\Gamma)$ is semisimple with no compact factor, we prove that every $\Gamma$-orbit closure in $G/\Lambda$ is a finite volume homogeneous space. We also establish related equidistribution properties.
DOI : 10.4007/annals.2013.178.3.5

Yves Benoist 1 ; Jean-François Quint 2

1 CNRS -- Université Paris-Sud, Orsay, France
2 CNRS -- Universit&#233 Bordeaux 1, Talence France
@article{10_4007_annals_2013_178_3_5,
     author = {Yves Benoist and Jean-Fran\c{c}ois Quint},
     title = {Stationary measures and invariant subsets of homogeneous spaces {(III)}},
     journal = {Annals of mathematics},
     pages = {1017--1059},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.178.3.5},
     mrnumber = {3092475},
     zbl = {06220728},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.5/}
}
TY  - JOUR
AU  - Yves Benoist
AU  - Jean-François Quint
TI  - Stationary measures and invariant subsets of homogeneous spaces (III)
JO  - Annals of mathematics
PY  - 2013
SP  - 1017
EP  - 1059
VL  - 178
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.5/
DO  - 10.4007/annals.2013.178.3.5
LA  - en
ID  - 10_4007_annals_2013_178_3_5
ER  - 
%0 Journal Article
%A Yves Benoist
%A Jean-François Quint
%T Stationary measures and invariant subsets of homogeneous spaces (III)
%J Annals of mathematics
%D 2013
%P 1017-1059
%V 178
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.5/
%R 10.4007/annals.2013.178.3.5
%G en
%F 10_4007_annals_2013_178_3_5
Yves Benoist; Jean-François Quint. Stationary measures and invariant subsets of homogeneous spaces (III). Annals of mathematics, Tome 178 (2013) no. 3, pp. 1017-1059. doi : 10.4007/annals.2013.178.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.5/

Cité par Sources :