A problem on completeness of exponentials
Annals of mathematics, Tome 178 (2013) no. 3, pp. 983-1016.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\mu$ be a finite positive measure on the real line. For $a>0$, denote by $\mathcal{E}_a$ the family of exponential functions $$\mathcal{E}_a=\{e^{ist}| s\in[0,a]\}.$$ The exponential type of $\mu$ is the infimum of all numbers $a$ such that the finite linear combinations of the exponentials from $\mathcal{E}_a$ are dense in $L^2(\mu)$. If the set of such $a$ is empty, the exponential type of $\mu$ is defined as infinity. The well-known type problem asks to find the exponential type of $\mu$ in terms of $\mu$. In this note we present a solution to the type problem and discuss its relations with known results.
DOI : 10.4007/annals.2013.178.3.4

Alexei Poltoratski 1

1 Texas A&M University, College Station, TX
@article{10_4007_annals_2013_178_3_4,
     author = {Alexei Poltoratski},
     title = {A problem  on completeness of exponentials},
     journal = {Annals of mathematics},
     pages = {983--1016},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.178.3.4},
     mrnumber = {3092474},
     zbl = {06220727},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.4/}
}
TY  - JOUR
AU  - Alexei Poltoratski
TI  - A problem  on completeness of exponentials
JO  - Annals of mathematics
PY  - 2013
SP  - 983
EP  - 1016
VL  - 178
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.4/
DO  - 10.4007/annals.2013.178.3.4
LA  - en
ID  - 10_4007_annals_2013_178_3_4
ER  - 
%0 Journal Article
%A Alexei Poltoratski
%T A problem  on completeness of exponentials
%J Annals of mathematics
%D 2013
%P 983-1016
%V 178
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.4/
%R 10.4007/annals.2013.178.3.4
%G en
%F 10_4007_annals_2013_178_3_4
Alexei Poltoratski. A problem  on completeness of exponentials. Annals of mathematics, Tome 178 (2013) no. 3, pp. 983-1016. doi : 10.4007/annals.2013.178.3.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.4/

Cité par Sources :