Counting local systems with principal unipotent local monodromy
Annals of mathematics, Tome 178 (2013) no. 3, pp. 921-982.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $X_1$ be a curve of genus $g$, projective and smooth over $\mathbb{F}_q$. Let $S_1\subset X_1$ be a reduced divisor consisting of $N_1$ closed points of $X_1$. Let $(X,S)$ be obtained from $(X_1,S_1)$ by extension of scalars to an algebraic closure $\mathbb{F}$ of $\mathbb{F}_q$. Fix a prime $l$ not dividing $q$. The pullback by the Frobenius endomorphism $\mathrm{Fr}$ of $X$ induces a permutation $\mathrm{Fr}^*$ of the set of isomorphism classes of rank $n$ irreducible $\overline{\mathbb{Q}}_l$-local systems on $X-S$. It maps to itself the subset of those classes for which the local monodromy at each $s\in S$ is unipotent, with a single Jordan block. Let $T(X_1,S_1,n,m)$ be the number of fixed points of $\mathrm{Fr}^{*m}$ acting on this subset. Under the assumption that $N_1{\,{\scriptstyle \ge}\,} 2$, we show that $T(X_1,S_1,n,m)$ is given by a formula reminiscent of a Lefschetz fixed point formula: the function $m\mapsto T(X_1,S_1,n,m)$ is of the form $\sum n_i\gamma_i^m$ for suitable integers $n_i$ and “eigenvalues” $\gamma_i$. We use Lafforgue to reduce the computation of $T(X_1,S_1,n,m)$ to counting automorphic representations of $\mathrm{GL}(n)$, and the assumption $N_1{\,{\scriptstyle \ge}\,} 2$ to move the counting to the multiplicative group of a division algebra, where the trace formula is easier to use.
DOI : 10.4007/annals.2013.178.3.3

Pierre Deligne 1 ; Yuval Z. Flicker 2

1 Institute for Advanced Study, Princeton, NJ
2 Ariel University, Ariel, Israel and<br/> The Ohio State University, Columbus, OH <br/>
@article{10_4007_annals_2013_178_3_3,
     author = {Pierre Deligne and Yuval Z. Flicker},
     title = {Counting local systems with principal unipotent local monodromy},
     journal = {Annals of mathematics},
     pages = {921--982},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.178.3.3},
     mrnumber = {3092473},
     zbl = {06220726},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.3/}
}
TY  - JOUR
AU  - Pierre Deligne
AU  - Yuval Z. Flicker
TI  - Counting local systems with principal unipotent local monodromy
JO  - Annals of mathematics
PY  - 2013
SP  - 921
EP  - 982
VL  - 178
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.3/
DO  - 10.4007/annals.2013.178.3.3
LA  - en
ID  - 10_4007_annals_2013_178_3_3
ER  - 
%0 Journal Article
%A Pierre Deligne
%A Yuval Z. Flicker
%T Counting local systems with principal unipotent local monodromy
%J Annals of mathematics
%D 2013
%P 921-982
%V 178
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.3/
%R 10.4007/annals.2013.178.3.3
%G en
%F 10_4007_annals_2013_178_3_3
Pierre Deligne; Yuval Z. Flicker. Counting local systems with principal unipotent local monodromy. Annals of mathematics, Tome 178 (2013) no. 3, pp. 921-982. doi : 10.4007/annals.2013.178.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.3.3/

Cité par Sources :