Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow
Annals of mathematics, Tome 178 (2013) no. 2, pp. 385-442 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We consider the $\mathrm{SL}(2, \mathbb{R})$ action on moduli spaces of quadratic differentials. If $\mu$ is an $\mathrm{SL}(2, \mathbb{R})$-invariant probability measure, crucial information about the associated representation on $L^2(\mu)$ (and, in particular, fine asymptotics for decay of correlations of the diagonal action, the Teichmüller flow) is encoded in the part of the spectrum of the corresponding foliated hyperbolic Laplacian that lies in $\!(0,1/4)\!$ (which controls the contribution of the complementary series). Here we prove that the essential spectrum of an invariant algebraic measure is contained in $[1/4,\infty)$; i.e., for every $\delta\!>\!0$, there are only finitely many eigenvalues (counted with multiplicity) in $(0,1/4\!-\!\delta)$. In particular, all algebraic invariant measures have a spectral gap.

DOI : 10.4007/annals.2013.178.2.1

Artur Avila 1 ; Sébastien Gouëzel 2

1 CNRS UMR 7586, Institut de Mathématiques de Jussieu, Paris, France and IMPA, Rio de Janeiro, Brazil
2 IRMAR, Université de Rennes 1, Rennes, France
@article{10_4007_annals_2013_178_2_1,
     author = {Artur Avila and S\'ebastien Gou\"ezel},
     title = {Small eigenvalues of the {Laplacian} for algebraic measures in moduli space, and mixing properties of the {Teichm\"uller} flow},
     journal = {Annals of mathematics},
     pages = {385--442},
     year = {2013},
     volume = {178},
     number = {2},
     doi = {10.4007/annals.2013.178.2.1},
     mrnumber = {3071503},
     zbl = {06203671},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.2.1/}
}
TY  - JOUR
AU  - Artur Avila
AU  - Sébastien Gouëzel
TI  - Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow
JO  - Annals of mathematics
PY  - 2013
SP  - 385
EP  - 442
VL  - 178
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.2.1/
DO  - 10.4007/annals.2013.178.2.1
LA  - en
ID  - 10_4007_annals_2013_178_2_1
ER  - 
%0 Journal Article
%A Artur Avila
%A Sébastien Gouëzel
%T Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow
%J Annals of mathematics
%D 2013
%P 385-442
%V 178
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.2.1/
%R 10.4007/annals.2013.178.2.1
%G en
%F 10_4007_annals_2013_178_2_1
Artur Avila; Sébastien Gouëzel. Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow. Annals of mathematics, Tome 178 (2013) no. 2, pp. 385-442. doi: 10.4007/annals.2013.178.2.1

Cité par Sources :