A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$
Annals of mathematics, Tome 178 (2013) no. 1, pp. 183-230.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $L^{2,p}(\mathbb{R}^2)$ be the Sobolev space of real-valued functions on the plane whose Hessian belongs to $L^p$. For any finite subset $E \subset \Bbb{R}^2$ and $p>2$, let $L^{2,p}(\Bbb{R}^2)|_E$ be the space of real-valued functions on $E$, equipped with the trace seminorm. In this paper we construct a bounded linear extension operator $T : L^{2,p}(\mathbb{R}^2)|_E \rightarrow L^{2,p}(\mathbb{R}^2)$. We also provide an explicit formula that approximates the $L^{2,p}(\mathbb{R}^2)|_E$ trace seminorm.
DOI : 10.4007/annals.2013.178.1.3

Arie Israel 1

1 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
@article{10_4007_annals_2013_178_1_3,
     author = {Arie Israel},
     title = {A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$},
     journal = {Annals of mathematics},
     pages = {183--230},
     publisher = {mathdoc},
     volume = {178},
     number = {1},
     year = {2013},
     doi = {10.4007/annals.2013.178.1.3},
     mrnumber = {3043580},
     zbl = {06190559},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/}
}
TY  - JOUR
AU  - Arie Israel
TI  - A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$
JO  - Annals of mathematics
PY  - 2013
SP  - 183
EP  - 230
VL  - 178
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/
DO  - 10.4007/annals.2013.178.1.3
LA  - en
ID  - 10_4007_annals_2013_178_1_3
ER  - 
%0 Journal Article
%A Arie Israel
%T A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$
%J Annals of mathematics
%D 2013
%P 183-230
%V 178
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/
%R 10.4007/annals.2013.178.1.3
%G en
%F 10_4007_annals_2013_178_1_3
Arie Israel. A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$. Annals of mathematics, Tome 178 (2013) no. 1, pp. 183-230. doi : 10.4007/annals.2013.178.1.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/

Cité par Sources :