Voir la notice de l'article provenant de la source Annals of Mathematics website
@article{10_4007_annals_2013_178_1_3, author = {Arie Israel}, title = {A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$}, journal = {Annals of mathematics}, pages = {183--230}, publisher = {mathdoc}, volume = {178}, number = {1}, year = {2013}, doi = {10.4007/annals.2013.178.1.3}, mrnumber = {3043580}, zbl = {06190559}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/} }
TY - JOUR AU - Arie Israel TI - A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$ JO - Annals of mathematics PY - 2013 SP - 183 EP - 230 VL - 178 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/ DO - 10.4007/annals.2013.178.1.3 LA - en ID - 10_4007_annals_2013_178_1_3 ER -
%0 Journal Article %A Arie Israel %T A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$ %J Annals of mathematics %D 2013 %P 183-230 %V 178 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/ %R 10.4007/annals.2013.178.1.3 %G en %F 10_4007_annals_2013_178_1_3
Arie Israel. A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$. Annals of mathematics, Tome 178 (2013) no. 1, pp. 183-230. doi : 10.4007/annals.2013.178.1.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.1.3/
Cité par Sources :