Finite time singularities for Lagrangian mean curvature flow
Annals of mathematics, Tome 177 (2013) no. 3, pp. 1029-1076.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Given any embedded Lagrangian on a four-dimensional compact Calabi-Yau, we find another Lagrangian in the same Hamiltonian isotopy class that develops a finite time singularity under mean curvature flow. This contradicts a weaker version of the Thomas-Yau conjecture regarding long time existence and convergence of Lagrangian mean curvature flow.
DOI : 10.4007/annals.2013.177.3.5

André Neves 1

1 Department of Mathematics, Imperial College London, South Kensington Campus, London S27 2AZ, United Kingdom
@article{10_4007_annals_2013_177_3_5,
     author = {Andr\'e Neves},
     title = {Finite time singularities for {Lagrangian} mean curvature flow},
     journal = {Annals of mathematics},
     pages = {1029--1076},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.177.3.5},
     mrnumber = {3034293},
     zbl = {06176987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.5/}
}
TY  - JOUR
AU  - André Neves
TI  - Finite time singularities for Lagrangian mean curvature flow
JO  - Annals of mathematics
PY  - 2013
SP  - 1029
EP  - 1076
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.5/
DO  - 10.4007/annals.2013.177.3.5
LA  - en
ID  - 10_4007_annals_2013_177_3_5
ER  - 
%0 Journal Article
%A André Neves
%T Finite time singularities for Lagrangian mean curvature flow
%J Annals of mathematics
%D 2013
%P 1029-1076
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.5/
%R 10.4007/annals.2013.177.3.5
%G en
%F 10_4007_annals_2013_177_3_5
André Neves. Finite time singularities for Lagrangian mean curvature flow. Annals of mathematics, Tome 177 (2013) no. 3, pp. 1029-1076. doi : 10.4007/annals.2013.177.3.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.5/

Cité par Sources :