The Dehn function of $\mathrm{SL}(n;\mathbb{Z})$
Annals of mathematics, Tome 177 (2013) no. 3, pp. 969-1027.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that when $n\ge 5$, the Dehn function of $\mathrm{SL}(n;\mathbb{Z})$ is quadratic. The proof involves decomposing a disc in $\mathrm{SL}(n;\mathbb{R})/\mathrm{SO}(n)$ into triangles of varying sizes. By mapping these triangles into $\mathrm{SL}(n;\mathbb{Z})$ and replacing large elementary matrices by “shortcuts,” we obtain words of a particular form, and we use combinatorial techniques to fill these loops.
DOI : 10.4007/annals.2013.177.3.4

Robert Young 1

1 Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON M5S 2E4, Canada
@article{10_4007_annals_2013_177_3_4,
     author = {Robert Young},
     title = {The {Dehn} function of $\mathrm{SL}(n;\mathbb{Z})$},
     journal = {Annals of mathematics},
     pages = {969--1027},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.177.3.4},
     mrnumber = {3034292},
     zbl = {06176986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.4/}
}
TY  - JOUR
AU  - Robert Young
TI  - The Dehn function of $\mathrm{SL}(n;\mathbb{Z})$
JO  - Annals of mathematics
PY  - 2013
SP  - 969
EP  - 1027
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.4/
DO  - 10.4007/annals.2013.177.3.4
LA  - en
ID  - 10_4007_annals_2013_177_3_4
ER  - 
%0 Journal Article
%A Robert Young
%T The Dehn function of $\mathrm{SL}(n;\mathbb{Z})$
%J Annals of mathematics
%D 2013
%P 969-1027
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.4/
%R 10.4007/annals.2013.177.3.4
%G en
%F 10_4007_annals_2013_177_3_4
Robert Young. The Dehn function of $\mathrm{SL}(n;\mathbb{Z})$. Annals of mathematics, Tome 177 (2013) no. 3, pp. 969-1027. doi : 10.4007/annals.2013.177.3.4. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.4/

Cité par Sources :