Log minimal model program for the moduli space of stable curves: the first flip
Annals of mathematics, Tome 177 (2013) no. 3, pp. 911-968.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give a geometric invariant theory (GIT) construction of the log canonical model $\bar M_g(\alpha)$ of the pairs $(\bar M_g, \alpha \delta)$ for $\alpha \in (7/10 – \epsilon, 7/10]$ for small $\epsilon \in \mathbb Q_+$. We show that $\bar M_g(7/10)$ is isomorphic to the GIT quotient of the Chow variety of bicanonical curves; $\bar M_g(7/10-\epsilon)$ is isomorphic to the GIT quotient of the asymptotically-linearized Hilbert scheme of bicanonical curves. In each case, we completely classify the (semi)stable curves and their orbit closures. Chow semistable curves have ordinary cusps and tacnodes as singularities but do not admit elliptic tails. Hilbert semistable curves satisfy further conditions; e.g., they do not contain elliptic chains. We show that there is a small contraction $\Psi: \bar M_g(7/10+\epsilon) \to \bar M_g(7/10)$ that contracts the locus of elliptic bridges. Moreover, by using the GIT interpretation of the log canonical models, we construct a small contraction $\Psi^+ : \bar M_g(7/10-\epsilon) \to \bar M_g(7/10)$ that is the Mori flip of $\Psi$.
DOI : 10.4007/annals.2013.177.3.3

Brendan Hassett 1 ; Donghoon Hyeon 2

1 Department of Matheamtics-MS136, Rice University, 6100 S. Main St., Houston, TX 77251-1892
2 Department of Mathematics, POSTECH San 31, Hyojadong, Namgu, Pohang, Gyungbu 790-784, Republic of Korea
@article{10_4007_annals_2013_177_3_3,
     author = {Brendan Hassett and Donghoon Hyeon},
     title = {Log minimal model program for the  moduli space of stable curves: the first flip},
     journal = {Annals of mathematics},
     pages = {911--968},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.177.3.3},
     mrnumber = {3034291},
     zbl = {06176985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.3/}
}
TY  - JOUR
AU  - Brendan Hassett
AU  - Donghoon Hyeon
TI  - Log minimal model program for the  moduli space of stable curves: the first flip
JO  - Annals of mathematics
PY  - 2013
SP  - 911
EP  - 968
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.3/
DO  - 10.4007/annals.2013.177.3.3
LA  - en
ID  - 10_4007_annals_2013_177_3_3
ER  - 
%0 Journal Article
%A Brendan Hassett
%A Donghoon Hyeon
%T Log minimal model program for the  moduli space of stable curves: the first flip
%J Annals of mathematics
%D 2013
%P 911-968
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.3/
%R 10.4007/annals.2013.177.3.3
%G en
%F 10_4007_annals_2013_177_3_3
Brendan Hassett; Donghoon Hyeon. Log minimal model program for the  moduli space of stable curves: the first flip. Annals of mathematics, Tome 177 (2013) no. 3, pp. 911-968. doi : 10.4007/annals.2013.177.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.3/

Cité par Sources :