Diophantine geometry over groups VIII: Stability
Annals of mathematics, Tome 177 (2013) no. 3, pp. 787-868.

Voir la notice de l'article provenant de la source Annals of Mathematics website

This paper is the eighth in a sequence on the structure of sets of solutions to systems of equations in free and hyperbolic groups, projections of such sets (Diophantine sets), and the structure of definable sets over free and hyperbolic groups. In this eighth paper we use a modification of the sieve procedure, which was used in proving quantifier elimination in the theory of a free group, to prove that free and torsion-free (Gromov) hyperbolic groups are stable.
DOI : 10.4007/annals.2013.177.3.1

Z. Sela 1

1 Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
@article{10_4007_annals_2013_177_3_1,
     author = {Z. Sela},
     title = {Diophantine geometry over groups {VIII:}  {Stability}},
     journal = {Annals of mathematics},
     pages = {787--868},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2013},
     doi = {10.4007/annals.2013.177.3.1},
     mrnumber = {3034289},
     zbl = {06176983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.1/}
}
TY  - JOUR
AU  - Z. Sela
TI  - Diophantine geometry over groups VIII:  Stability
JO  - Annals of mathematics
PY  - 2013
SP  - 787
EP  - 868
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.1/
DO  - 10.4007/annals.2013.177.3.1
LA  - en
ID  - 10_4007_annals_2013_177_3_1
ER  - 
%0 Journal Article
%A Z. Sela
%T Diophantine geometry over groups VIII:  Stability
%J Annals of mathematics
%D 2013
%P 787-868
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.1/
%R 10.4007/annals.2013.177.3.1
%G en
%F 10_4007_annals_2013_177_3_1
Z. Sela. Diophantine geometry over groups VIII:  Stability. Annals of mathematics, Tome 177 (2013) no. 3, pp. 787-868. doi : 10.4007/annals.2013.177.3.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.3.1/

Cité par Sources :