Nodal length fluctuations for arithmetic random waves
Annals of mathematics, Tome 177 (2013) no. 2, pp. 699-737.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (“arithmetic random waves”). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
DOI : 10.4007/annals.2013.177.2.8

Manjunath Krishnapur 1 ; Pär Kurlberg 2 ; Igor Wigman 3

1 Indian Institute of Science, Bangalore, India
2 Royal Institute of Technology, Stockholm, Sweden
3 Cardiff University, Wales, UK
@article{10_4007_annals_2013_177_2_8,
     author = {Manjunath Krishnapur and P\"ar Kurlberg and Igor Wigman},
     title = {Nodal length fluctuations for arithmetic random waves},
     journal = {Annals of mathematics},
     pages = {699--737},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2013},
     doi = {10.4007/annals.2013.177.2.8},
     mrnumber = {3010810},
     zbl = {06156619},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.8/}
}
TY  - JOUR
AU  - Manjunath Krishnapur
AU  - Pär Kurlberg
AU  - Igor Wigman
TI  - Nodal length fluctuations for arithmetic random waves
JO  - Annals of mathematics
PY  - 2013
SP  - 699
EP  - 737
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.8/
DO  - 10.4007/annals.2013.177.2.8
LA  - en
ID  - 10_4007_annals_2013_177_2_8
ER  - 
%0 Journal Article
%A Manjunath Krishnapur
%A Pär Kurlberg
%A Igor Wigman
%T Nodal length fluctuations for arithmetic random waves
%J Annals of mathematics
%D 2013
%P 699-737
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.8/
%R 10.4007/annals.2013.177.2.8
%G en
%F 10_4007_annals_2013_177_2_8
Manjunath Krishnapur; Pär Kurlberg; Igor Wigman. Nodal length fluctuations for arithmetic random waves. Annals of mathematics, Tome 177 (2013) no. 2, pp. 699-737. doi : 10.4007/annals.2013.177.2.8. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.8/

Cité par Sources :