Quasisymmetric rigidity of square Sierpiński carpets
Annals of mathematics, Tome 177 (2013) no. 2, pp. 591-643.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that every quasisymmetric self-homeomorphism of the standard 1/3-Sierpiński carpet $S_3$ is a Euclidean isometry. For carpets in a more general family, the standard $1/p$-Sierpiński carpets $S_p$, $p\ge 3$ odd, we show that the groups of quasisymmetric self-maps are finite dihedral. We also establish that $S_p$ and $S_q$ are quasisymmetrically equivalent only if $p=q$. The main tool in the proof for these facts is a new invariant—a certain discrete modulus of a path family—that is preserved under quasisymmetric maps of carpets.
DOI : 10.4007/annals.2013.177.2.5

Mario Bonk 1 ; Sergei Merenkov 2

1 University of California, Los Angeles, Los Angeles, CA
2 University of Illinois at Urbana-Champaign, Urbana, IL
@article{10_4007_annals_2013_177_2_5,
     author = {Mario Bonk and Sergei Merenkov},
     title = {Quasisymmetric rigidity of  square {Sierpi\'nski} carpets},
     journal = {Annals of mathematics},
     pages = {591--643},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2013},
     doi = {10.4007/annals.2013.177.2.5},
     mrnumber = {3010807},
     zbl = {06156616},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.5/}
}
TY  - JOUR
AU  - Mario Bonk
AU  - Sergei Merenkov
TI  - Quasisymmetric rigidity of  square Sierpiński carpets
JO  - Annals of mathematics
PY  - 2013
SP  - 591
EP  - 643
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.5/
DO  - 10.4007/annals.2013.177.2.5
LA  - en
ID  - 10_4007_annals_2013_177_2_5
ER  - 
%0 Journal Article
%A Mario Bonk
%A Sergei Merenkov
%T Quasisymmetric rigidity of  square Sierpiński carpets
%J Annals of mathematics
%D 2013
%P 591-643
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.5/
%R 10.4007/annals.2013.177.2.5
%G en
%F 10_4007_annals_2013_177_2_5
Mario Bonk; Sergei Merenkov. Quasisymmetric rigidity of  square Sierpiński carpets. Annals of mathematics, Tome 177 (2013) no. 2, pp. 591-643. doi : 10.4007/annals.2013.177.2.5. http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.2.5/

Cité par Sources :